精英家教网 > 高中数学 > 题目详情
(2011•合肥三模)设函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则函数y=f(x)在区间[0,100]上至少有个
50
50
零点.
分析:用条件f(x+1)与f(x-1)都是奇函数,推导出原函数的两个对称中心(即得零点)和周期,再用周期性在[0,100]内求零点的个数
解答:解:∵f(x+1)与f(x-1)都是奇函数
∴f(-x+1)=-f(x+1)---------------①
f(-x-1)=-f(x-1)-----------------②
由①知f(x)关于点(1,0)对称,∴f(1)=0
由②知f(x)关于点(-1,0)对称,∴f(-1)=0
又由②得f(-x+1)=-f(x-3)---------③
联立①③可得:f(x+1)=f(x-3)
∴f(x)=f(x-4)
∴原函数周期T=4
∴f(1+mT)=f(1+4m)=0(m∈N)
f(-1+nT)=f(-1+4n)=0(n∈N)
令0≤1+4m≤100,0≤-1+4n≤100
得:-
1
4
≤m≤
99
4
1
4
≤n≤
101
4

又∵m,n∈N
∴m,n各有25个取值
∴在[0,100]上至少有50个零点
故答案为:50
点评:本题以零点为载体考查函数的对称性和奇偶性,要注意已知条件的转化和函数性质的灵活应用.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•合肥三模)已知
a
=(sinx+cosx,sinx-cosx),
b
=(sinx,cosx)
(1)若
a
b
,求x的值;
(2)当x∈(-
π
6
π
4
)
时,求函数f(x)=
a
b
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)在△ABC中,AB⊥AC,AB=6,AC=4,D为AC的中点,点E在边AB上,且3AE=AB,BD与CE交于点G,则
AG
BC
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)5名男性驴友到某旅游风景区游玩,晚上入住一家宾馆,宾馆有3间客房可选,一间客房为3人间,其余为2人间,则5人入住两间客房的不同方法有
20
20
种(用数字法作答).

查看答案和解析>>

同步练习册答案