精英家教网 > 高中数学 > 题目详情
17.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.
(1)求圆C的方程;
(2)已知斜率为k的直线m过原点,并且被圆C截得的弦长为2,求直线m的方程.

分析 (1)由题意设出圆心C的坐标,由圆与直线相切的关系列出方程,求出圆C的圆心坐标和半径,即可求出圆的方程;
(2)设直线m的方程为y=kx,根据弦长公式列出方程求出k即可.

解答 解:(1)由题意设圆心的坐标为C(a,-2a),…(1分)
∵圆C经过点A(2,-1),直线x+y=1相切,
∴$\sqrt{(a-2)^{2}+(-2a+1)^{2}}$=$\frac{|a-2a-1|}{\sqrt{2}}$,…(3分)
化简得a2-2a+1=0,解得a=1,…(4分)
∴圆心C(1,-2),半径r=|AC|=$\sqrt{(1-2)^{2}+(-2+1)^{2}}$=$\sqrt{2}$    …(5分)
∴圆C的方程为(x-1)2+(y+2)2=2                …(6分)
(2)设直线m的方程为y=kx,…(7分)
由题意得$\frac{|k+2|}{{\sqrt{1+{k^2}}}}=\sqrt{{{(\sqrt{2})}^2}-{{(\frac{2}{2})}^2}}$…(9分)
解得k=$-\frac{3}{4}$,…(11分)
∴直线m的方程为$y=-\frac{3}{4}x$.        …(12分)

点评 本题考查直线与圆的位置关系,弦长公式的应用,考查方程思想和待定系数法求圆的方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列概率模型中,是古典概型的个数为(  )
(1)从区间[1,10]内任取一个数,求取到1的概率;
(2)从1-10中任意取一个整数,求取到1的概率;
(3)在一个正方形ABCD内画一点P,求P刚好与点A重合的概率;
(4)向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-axlnx,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设$g(x)=\frac{f(x)}{lnx}$,若函数g(x)在(1,+∞)上为减函数,求实数a的最小值;
(Ⅲ)在区间[e,e2]上,若存在x0,使得g(x0)≤g′(x)max+a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导数f′(x)在R上的恒有f′(x)<$\frac{1}{4}$(x∈R),则不等式f(x2)<$\frac{{x}^{2}}{4}$+$\frac{1}{2}$的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)D.(-$\sqrt{2}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线x2=4y,直线y=k(k为常数)与抛物线交于A,B两个不同点,若在抛物线上存在一点P(不与A,B重合),满足$\overrightarrow{PA}•\overrightarrow{PB}=0$,则实数k的取值范围为(  )
A.k≥2B.k≥4C.0<k≤2D.0<k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y2=4x上有两点A、B到y轴的距离之和为6,则点A、B到此抛物线焦点的距离之和为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3+2f′(1)x2+1,g(x)=x2-ax(a∈R)
(Ⅰ)求f'(l)的值和f(x)的单调区间;
(Ⅱ)若对任意x1∈[-1,1]都存在x2∈(0,2),使得f(x1)≥g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A,B,C是球O是球面上三点,AB=2,BC=4,∠ABC=$\frac{π}{3}$,且棱锥O-ABC的体积为$\frac{4\sqrt{3}}{3}$,则球O的表面积为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=1-$\frac{2}{{{2^x}+1}}$(x∈R),
(1)求反函数f-1(x); 
(2)解不等式f-1(x)>log2(1+x)+1.

查看答案和解析>>

同步练习册答案