精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=1-$\frac{2}{{{2^x}+1}}$(x∈R),
(1)求反函数f-1(x); 
(2)解不等式f-1(x)>log2(1+x)+1.

分析 (1)令y=f(x),用y表示出x即可得出f(x)的反函数是y=f-1(x); 
(2)把不等式f-1(x)>log2(1+x)+1转化为log2$\frac{1+x}{1-x}$>log22(1+x),写出等价的不等式组,求解集即可.

解答 解:(1)∵函数y=f(x)=1-$\frac{2}{{{2^x}+1}}$(x∈R),
∴$\frac{2}{{2}^{x}+1}$=1-y,
∴2x=$\frac{1+y}{1-y}$,
∴x=log2$\frac{1+y}{1-y}$,且-1<y<1;
∴f(x)的反函数是y=f-1(x)=log2$\frac{1+x}{1-x}$,x∈(-1,1); 
(2)不等式f-1(x)>log2(1+x)+1可化为
log2$\frac{1+x}{1-x}$>log22(1+x),
等价于$\left\{\begin{array}{l}{-1<x<1}\\{\frac{1+x}{1-x}>2(1+x)}\end{array}\right.$,
解得$\frac{1}{2}$<x<1,
∴该不等式的解集为($\frac{1}{2}$,1).

点评 本题考查了求函数的反函数以及解不等式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.
(1)求圆C的方程;
(2)已知斜率为k的直线m过原点,并且被圆C截得的弦长为2,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线x2=4y,过焦点F的直线l交抛物线于A,B两点(点A在第一象限),若直线l的倾斜角为30°,则$\frac{|AF|}{|BF|}$等于(  )
A.3B.$\frac{5}{2}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.随机变量X的分布列为
X-10123
P0.16$\frac{a}{10}$a2$\frac{a}{5}$0.3
(Ⅰ)求a的值;
(Ⅱ)求E(X);
(Ⅲ)若Y=2X-3,求E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),则该函数的最小正周期为π,值域为[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.“a=$\frac{1}{2}$”是“直线l1:(a+2)x+(a-2)y=1与直线l2:(a-2)x+(3a-4)y=2相互垂直”的充分不必要条件.(填充分必要、充分不必要、必要不充分)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知虚数z=(x-2)+yi(x,y∈R),若|z|=1,则$\frac{y}{x}$的取值范围是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.AB抛物线y2=4x的过焦点F的弦,O为坐标原点,则以AF为直径的圆与y轴有1个公共点;抛物线准线与x轴交于点C,若∠OFA=135°,cos∠ACB=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{a}$=(3,-2,-1)是直线l的方向向量,$\overrightarrow{n}$=(-1,-2,1)是平面α的法向量,则直线l与平面α(  )
A.垂直B.平行或在平面α内C.平行D.在平面α内

查看答案和解析>>

同步练习册答案