精英家教网 > 高中数学 > 题目详情
已知直线l平面,直线平面,则下列四个结论:
①若,则      ②若,则
③若,则      ④若,则
其中正确的结论的序号是:(  )
A.①④B.②④C.①③D.②③
C

试题分析:已知直线l平面,直线平面,若,则l平面,所以,①正确;
已知直线l平面,直线平面,若,则l平面,所以相交或异面,②不正确;
已知直线l平面,直线平面,若,则平面,所以,③正确;
已知直线l平面,直线平面,若,则仅垂直于平面内的一条直线,所以不一定成立,④不正确;
综上知选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,为正三角形,平面的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方体,点的中点.

(1)求证:
(2)若,试问在线段上是否存在点使得,若存在求出,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是正方形,平面分别为的中点.

(1)求证:平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。

(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥面,为线段上的点.

(Ⅰ)证明:⊥面 ;
(Ⅱ)若的中点,求所成的角的正切值;
(Ⅲ)若满足⊥面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面 ,下列命题中正确的是 (     )
A.,则
B.,则
C.,则
D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所在平面,的直径,上一点,,,给出下列结论:①; ②;③; ④平面平面 ⑤是直角三角形
其中正确的命题的序号是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面.下列四个命题中,正确的是(    )
A.,,则
B.,则
C.,,则
D.,则

查看答案和解析>>

同步练习册答案