¶ÔÓÚº¯Êýf£¨x£©£¬Èôf£¨x£©=x£¬Ôò³ÆxΪf£¨x£©µÄ£º¡°²»¶¯µã¡±£»Èôf[f£¨x£©]=x£¬Ôò³ÆxΪf£¨x£©µÄ¡°Îȶ¨µã¡±£®º¯Êýf£¨x£©µÄ¡°²»¶¯µã¡±ºÍ¡°Îȶ¨µã¡±µÄ¼¯ºÏ·Ö±ð¼ÇΪAºÍB£¬¼´A={x|f[f£¨x£©]=x}£®
£¨1£©É躯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬ÇÒA=∅£¬ÇóÖ¤£ºB=∅£»
£¨2£©É躯Êýf£¨x£©=3x+4£¬Ç󼯺ÏAºÍB£¬²¢·ÖÎöÄÜ·ñ¸ù¾Ý£¨1£©£¨2£©ÖеĽáÂÛÅжÏA=Bºã³ÉÁ¢£¿ÈôÄÜ£¬Çë¸ø³öÖ¤Ã÷£¬Èô²»ÄÜ£¬Çë¾ÙÒÔ·´Àý£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÒÑÖªÖ⻶¯µãµÄ¶¨Ò壬Óɺ¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©½áºÏ¶þ´Î·½³ÌµÄ¸ùµÄ¸öÊýÓë¡÷µÄ¹Øϵ£¬¿ÉµÃ½áÂÛ£»
£¨2£©ÓÉÒÑÖªÖ⻶¯µãµÄ¶¨Ò壬Óɺ¯Êýf£¨x£©=3x+4£¬Çó³ö¼¯ºÏAºÍB£¬Áí¿É¾Ù³ö·´Àýf£¨1£©=1£¬f£¨2£©=3£¬f£¨3£©=2£¬ÍÆ·­½áÂÛA=Bºã³ÉÁ¢
½â´ð£º½â£º¡ßA={x|f[f£¨x£©]=x}=∅£¬
¡àax2+bx+c=xÎÞ½â
¼´¡÷=£¨b-1£©2-4a£¼0
¢Ùµ±a£¾0ʱ£¬¶þ´Îº¯Êýy=f£¨x£©-x£¬¼´y=ax2+£¨b-1£©x+cµÄͼÏóÔÚxÖáµÄÉÏ·½
¡à?x¡ÊR£¬f£¨x£©-xºã³ÉÁ¢
¡à?x¡ÊR£¬f£¨x£©£¾xºã³ÉÁ¢
¡à?x¡ÊR£¬f[f£¨x£©]£¾f£¨x£©£¾xºã³ÉÁ¢£¬¼´B=∅£»
¢Úµ±a£¼0ʱ£¬Í¬Àí¿ÉÖ¤B=∅£»
×ÛÉÏ£¬¶ÔÓÚº¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬µ±A=∅ʱ£¬B=∅£»
£¨2£©ÓÉf£¨x£©=x£¬f£¨x£©=3x+4µÃ3x+4=x£¬½âµÃx=-2
ÓÉf[f£¨x£©]=xµÃ3£¨3x+4£©+4=x£¬½âµÃx=-2
¡àA=B={-2}
µ«A=B²»Äܺã³ÉÁ¢£¬Èçf£¨x£©ÎªÈç϶ÔÓ¦¹Øϵʱ£º
f£¨1£©=1£¬f£¨2£©=3£¬f£¨3£©=2
ÔòÓÐA={1}£¬B={1£¬2£¬3}ʹA¡ÙB
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊǺ¯Êýºã³ÉÁ¢ÎÊÌ⣬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÆäÖÐÕýÈ·Àí½â²»¶¯µãµÄ¶¨ÒåÊǽâ´ðµÄ¹Ø¼ü£¬ÁíÍâ¾Ù·´ÀýÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚÇø¼äM=[a£¬b]£¨ÆäÖÐa£¼b£©£¬Ê¹µÃ{y|y=f£¨x£©£¬x¡ÊM}=M£¬Ôò³ÆÇø¼äMΪº¯Êýf£¨x£©µÄÒ»¸ö¡°Îȶ¨Çø¼ä¡±£®¸ø³öÏÂÁÐ4¸öº¯Êý£º
¢Ùf£¨x£©=£¨x-1£©2£»¢Úf£¨x£©=|2x-1|£»¢Ûf(x)=cos
¦Ð2
x
£»¢Üf£¨x£©=ex£®ÆäÖдæÔÚ¡°Îȶ¨Çø¼ä¡±µÄº¯ÊýÓÐ
 
£¨Ìî³öËùÓÐÂú×ãÌõ¼þµÄº¯ÊýÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬ÈôÔÚÆ䶨ÒåÓòÄÚ´æÔÚÁ½¸öʵÊýa£¬b£¨a£¼b£©£¬Ê¹µ±x¡Ê[a£¬b]ʱ£¬f£¨x£©µÄÖµÓòÒ²ÊÇ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©Îª¡°¿Æ±Èº¯Êý¡±£®Èôº¯Êýf£¨x£©=k+
x+2
ÊÇ¡°¿Æ±Èº¯Êý¡±£¬ÔòʵÊýkµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹f£¨x0£©=x0³ÉÁ¢£¬Ôò³Æx0Ϊf£¨x£©µÄ²»¶¯µã£®Èç¹ûº¯Êý
f£¨x£©=ax2+bx+1£¨a£¾0£©ÓÐÁ½¸öÏàÒìµÄ²»¶¯µãx1£¬x2£®
£¨1£©Èôx1£¼1£¼x2£¬ÇÒf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=m¶Ô³Æ£¬ÇóÖ¤£º
12
£¼m£¼1£»
£¨2£©Èô|x1|£¼2ÇÒ|x1-x2|=2£¬ÇóbµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èôf£¨x0£©=x0£¬Ôò³Æx0Ϊf£¨x£©µÄ£º¡°²»¶¯µã¡±£»Èôf[f£¨x0£©]=x0£¬Ôò³Æx0Ϊf£¨x£©µÄ¡°Îȶ¨µã¡±£®º¯Êýf£¨x£©µÄ¡°²»¶¯µã¡±ºÍ¡°Îȶ¨µã¡±µÄ¼¯ºÏ·Ö±ð¼ÇΪAºÍB£¬¼´A={x|f[f£¨x£©]=x}£®
£¨1£©É躯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬ÇÒA=∅£¬ÇóÖ¤£ºB=∅£»
£¨2£©É躯Êýf£¨x£©=3x+4£¬Ç󼯺ÏAºÍB£¬²¢·ÖÎöÄÜ·ñ¸ù¾Ý£¨1£©£¨2£©ÖеĽáÂÛÅжÏA=Bºã³ÉÁ¢£¿ÈôÄÜ£¬Çë¸ø³öÖ¤Ã÷£¬Èô²»ÄÜ£¬Çë¾ÙÒÔ·´Àý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0£©=x0£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄ²»¶¯µã£®Èôº¯Êýf£¨x£©=
x2+a
bx-c
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬ÇÒf£¨-2£©£¼-
1
2
£®
£¨1£©ÊÔÇóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£¬
£¨2£©ÒÑÖª¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1
an
£©=1£¬ÆäÖÐSn±íʾÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇóÖ¤£º(1-
1
an
)an+1£¼
1
e
£¼(1-
1
an
)an

£¨3£©ÔÚ£¨2£©µÄÇ°ÌâÌõ¼þÏ£¬Éèbn=-
1
an
£¬Tn±íʾÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇóÖ¤£ºT2011-1£¼ln2011£¼T2010£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸