分析 (Ⅰ)由已知向量等式列出关于b,c的方程组,求解得到b,c的值,再由隐含条件求得a,则椭圆方程可求;
(Ⅱ)设出直线l的方程,与椭圆方程联立,化为关于x的一元二次方程,由判别式大于0求得k的范围,利用根与系数的关系可得A,B的横坐标的和与积,结合$\overrightarrow{NE}$=λ$\overrightarrow{NF}$,可得λ=$\frac{{x}_{1}+2}{{x}_{2}+2}$,再由根与系数关系可得(x1+2)+(x2+2)=$\frac{4}{1+2{k}^{2}}$=(λ+1)(x2+2),(x1+2)(x2+2)=x1x2+2(x1+x2)+4=$\frac{2}{1+2{k}^{2}}$=$λ({x}_{2}+2)^{2}$,整理得到${k}^{2}=\frac{4λ}{(1+λ)^{2}}-\frac{1}{2}$.结合k的范围求得实数λ的取值范围.
解答 解:(Ⅰ)A(0,b),F1(-c,0),F2(c,0),
由$\overrightarrow{F{{\;}_{1}F}_{2}}$=2$\overrightarrow{N{F}_{1}}$,$\overrightarrow{AN}$•$\overrightarrow{A{F}_{1}}$=3,得$\left\{\begin{array}{l}{2c=2(2-c)}\\{2c+{b}^{2}=3}\end{array}\right.$,解得b=c=1,![]()
∴a2=b2+c2=2.
从而所求椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(II)如图,由题意知直线l的斜率存在且不为零,
设l方程为y=k(x+2)(k≠0),
代入$\frac{{x}^{2}}{2}+{y}^{2}=1$,整理得(1+2k2)x2+8k2x+(8k2-2)=0,
由△>0,得0<k2<$\frac{1}{2}$.
设E(x1,y1),F(x2,y2),
则$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-\frac{8{k}^{2}}{1+2{k}^{2}}}\\{{x}_{1}{x}_{2}=\frac{8{k}^{2}-2}{1+2{k}^{2}}}\end{array}\right.$,①
由于$\overrightarrow{NE}$=λ$\overrightarrow{NF}$,可得λ=$\frac{{x}_{1}+2}{{x}_{2}+2}$,且0<λ<1.
则(x1+2)+(x2+2)=$\frac{4}{1+2{k}^{2}}$=(λ+1)(x2+2),②
(x1+2)(x2+2)=x1x2+2(x1+x2)+4=$\frac{2}{1+2{k}^{2}}$=$λ({x}_{2}+2)^{2}$,③
③÷②2得$\frac{λ}{(λ+1)^{2}}=\frac{2{k}^{2}+1}{8}$,得${k}^{2}=\frac{4λ}{(1+λ)^{2}}-\frac{1}{2}$.
∵0$<{k}^{2}<\frac{1}{2}$,
∴0$<\frac{4λ}{(1+λ)^{2}}-\frac{1}{2}$$<\frac{1}{2}$,则$\left\{\begin{array}{l}{{λ}^{2}-2λ+1>0}\\{{λ}^{2}-6λ+1<0}\end{array}\right.$,
解得:$3-2\sqrt{2}<λ<3+2\sqrt{2}$,且λ≠1.
又∵0<λ<1,
∴$3-2\sqrt{2}$<λ<1.
∴λ的取值范围是(3-2$\sqrt{2}$,1).
点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{2kπ+\frac{π}{3},2kπ+\frac{4π}{3}}],k∈z$ | B. | $[{kπ+\frac{π}{3},kπ+\frac{4π}{3}}],k∈z$ | ||
| C. | $[{2kπ-\frac{π}{6},2kπ+\frac{π}{3}}],k∈z$ | D. | $[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈z$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈Z | B. | (2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$),k∈Z | ||
| C. | (4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈Z | D. | (4kπ-$\frac{2π}{3}$,4kπ+$\frac{4π}{3}$),k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②④ | C. | ③④ | D. | ②⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com