| A. | $[{2kπ+\frac{π}{3},2kπ+\frac{4π}{3}}],k∈z$ | B. | $[{kπ+\frac{π}{3},kπ+\frac{4π}{3}}],k∈z$ | ||
| C. | $[{2kπ-\frac{π}{6},2kπ+\frac{π}{3}}],k∈z$ | D. | $[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈z$ |
分析 根据条件求出函数的解析式,结合三角函数的单调性进行求解即可.
解答 解:∵函数f(x)的两条相邻对称轴间的距离为$\frac{π}{2}$,
∴$\frac{T}{2}$=$\frac{π}{2}$,即周期T=$π=\frac{2π}{ω}$,则ω=2,
此时f(x)=2sin(2x+φ),
把f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,
则g(x)=2sin[2(x-$\frac{π}{6}$)+φ]=2sin(2x+φ-$\frac{π}{3}$),
∵g(x)为偶函数,
∴φ-$\frac{π}{3}$=$\frac{π}{2}$+kπ,
则φ=$\frac{5π}{6}$+kπ,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴当k=-1时,φ=$\frac{5π}{6}$-π=-$\frac{π}{6}$,
则f(x)=2sin(2x-$\frac{π}{6}$),
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得2kπ-$\frac{π}{3}$≤2x≤2kπ+$\frac{2π}{3}$,
即kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
即函数的单调递增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z,
故选:C.
点评 本题主要考查三角函数解析式以及三角函数单调性的求解,根据条件求出ω 和φ的值是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | a>b⇒am2>bm2 | B. | $\frac{a}{c}>\frac{b}{c}$⇒a>b | ||
| C. | ac2>bc2⇒a>b | D. | a2>b2,ab>0⇒$\frac{1}{a}<\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5π | B. | $\sqrt{5}$π | C. | $\frac{5π}{3}$ | D. | $\frac{{5\sqrt{5}π}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [90,105) | [105,120) | [120,135) | [135,150) |
| 频数 | 10 | 25 | 10 | 5 |
| 分组 | [90,105) | [105,120) | [120,130) | [135,150) |
| 频数 | 3 | 17 | 20 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄x岁 | 20 | 30 | 40 | 50 |
| 周均学习成语知识时间y(小时) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com