(本小题满分12分)如图,在四棱锥
中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点
![]()
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
(1)见解析;(2)见解析。
【解析】
试题分析:(1)在△PAD中,因为E、F分别为AP,AD的中点,所以EF//PD.
又因为EF
平面PCD,PD
平面PCD,所以直线EF//平面PCD.
(2)连结DB,因为AB=AD,∠BAD=60°,
所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,
BF
平面ABCD,平面PAD
平面ABCD=AD,所以BF⊥平面PAD。又因为BF
平面BEF,所以平面BEF⊥平面PAD。
考点:面面垂直的性质定理;面面垂直的判定定理;线面垂直的判定定理;中位线的性质。
点评:本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,我们一定要熟练掌握性质定理和判定定理,同时本题也考查了空间想象能力,逻辑推理能力,属于常考题型。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com