6£®PM2.5ÊÇÖ¸¿ÕÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³Æ¿ÉÈë·Î¿ÅÁ£Î£®ÎªÁË̽¾¿³µÁ÷Á¿ÓëPM2.5µÄŨ¶ÈÊÇ·ñÏà¹Ø£¬Ïֲɼ¯µ½Ä³³ÇÊÐÖÜÒ»ÖÁÖÜÎåijһʱ¼ä¶Î³µÁ÷Á¿ÓëPM2.5µÄÊý¾ÝÈç±í£º
ʱ¼äÖÜÒ»ÖܶþÖÜÈýÖÜËÄÖÜÎå
³µÁ÷Á¿x£¨ÍòÁ¾£©5051545758
PM2.5µÄŨ¶Èy£¨Î¢¿Ë/Á¢·½Ã×£©6970747879
£¨1£©¸ù¾ÝÉϱíÊý¾Ý£¬ÇëÔÚÈçÍ¼×ø±êϵÖл­³öÉ¢µãͼ£»
£¨2£©¸ù¾ÝÉϱíÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$£»£¨±£Áô2λСÊý£©
£¨3£©ÈôÖÜÁùͬһʱ¼ä¶Î³µÁ÷Á¿ÊÇ25ÍòÁ¾£¬ÊÔ¸ù¾Ý£¨2£©Çó³öµÄÏßÐԻع鷽³ÌÔ¤²â£¬´ËʱPM2.5µÄŨ¶ÈΪ¶àÉÙ£¨±£ÁôÕûÊý£©£¿
²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®

·ÖÎö £¨1£©ÀûÓÃÃèµã·¨¿ÉµÃÊý¾ÝµÄÉ¢µãͼ£»
£¨2£©¸ù¾Ý¹«Ê½Çó³öb£¬a£¬¿Éд³öÏßÐԻع鷽³Ì£»
£¨3£©¸ù¾Ý£¨2£©µÄÐԻع鷽³Ì£¬´úÈëx=25Çó³öPM2.5µÄŨ¶È£®

½â´ð ½â£º£¨1£©É¢µãͼÈçͼËùʾ£®¡­£¨2·Ö£©
£¨2£©$\overline{x}=\frac{50+51+54+57+58}{5}=54$£¬$\overline{y}=\frac{69+70+74+78+79}{5}=74$£¬¡­£¨6·Ö£©
$\sum_{i=1}^{5}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©=4¡Á5+3¡Á4+3¡Á4+4¡Á5$=64£¬$\sum_{i=1}^{5}£¨{x}_{i}-\overline{x}£©^{2}=£¨-4£©^{2}+£¨-3£©^{2}+{3}^{2}+{4}^{2}$=50£¬
$\widehat{b}=\frac{\sum_{i=1}^{5}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{5}£¨{x}_{i}-\overline{x}£©}=\frac{64}{50}=1.28$£¬
$\widehat{a}=\overline{y}-b\overline{x}=74-1.28¡Á54=4.88$£¬¡­£¨9·Ö£©
¹Êy¹ØÓÚxµÄÏßÐԻع鷽³ÌÊÇ£º$\widehat{y}=1.28x+4.8$8¡­£¨10·Ö£©
£¨3£©µ±x=2.5ʱ£¬y=1.28¡Á25+4.88=36.88¡Ö37
ËùÒÔ¿ÉÒÔÔ¤²â´ËʱPM2.5µÄŨ¶ÈԼΪ37¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏßÐԻعé·ÖÎöµÄ·½·¨£¬°üÀ¨É¢µãͼ£¬ÓÃ×îС¶þ³Ë·¨Çó²ÎÊý£¬ÒÔ¼°Óûع鷽³Ì½øÐÐÔ¤²âµÈ֪ʶ£¬¿¼²éÁË¿¼ÉúÊý¾Ý´¦ÀíºÍÔËËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚ¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{an}ÖУ¬a1=2£¬ÇÒ2a1£¬a3£¬3a2³ÉµÈ²îÊýÁУ®
£¨¢ñ£© ÇóµÈ±ÈÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£© ÈôÊýÁÐ{bn}Âú×ãbn=log2an£¬ÇóÊýÁÐ{$\frac{{b}_{n}}{{a}_{n}}$}µÄǰnÏîºÍTn£¬ÇóÖ¤Tn£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=x$\sqrt{1-{x}^{2}}$£¬Ôòf£¨sinx£©=sinx|cosx|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ax+lnx£¨a¡ÊR£©ÓÐÁ½¸öÁãµãx1£¬x2£®
£¨1£©ÇóaµÄȡֵ·¶Î§£»
£¨2£©ÊÇ·ñ´æÔÚʵÊý¦Ë£¬¶ÔÓÚ·ûºÏÌâÒâµÄÈÎÒâx1£¬x2£¬µ±x0=¦Ëx1+£¨1-¦Ë£©x2£¾0ʱ¾ùÓÐf¡ä£¨x0£©£¼0£¿Èô´æÔÚ£¬Çó³öËùÓЦ˵ÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®?x¡Ê£¨0£¬$\frac{¦Ð}{2}$£©¶¼ÓУºf£¨x£©£¾0ÇÒf£¨x£©£¼f¡ä£¨x£©tanx£¬ÔòÏÂÁи÷ʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{2}$f£¨$\frac{¦Ð}{3}$£©£¼$\sqrt{2}$f£¨$\frac{¦Ð}{4}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{4}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{3}$£©B£®$\sqrt{2}$f£¨$\frac{¦Ð}{4}$£©£¼$\sqrt{2}$f£¨$\frac{¦Ð}{3}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{3}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{4}$£©
C£®$\sqrt{2}$f£¨$\frac{¦Ð}{4}$£©£¼$\sqrt{2}$f£¨$\frac{¦Ð}{3}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{4}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{3}$£©D£®$\sqrt{2}$f£¨$\frac{¦Ð}{4}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{4}$£©£¼$\sqrt{2}$f£¨$\frac{¦Ð}{3}$£©£¼$\sqrt{3}$f£¨$\frac{¦Ð}{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèM£¬NÊÇÅ×ÎïÏßy2=4xÉÏ·Ö±ðλÓÚxÖáÁ½²àµÄÁ½¸ö¶¯µã£¬ÇÒ$\overrightarrow{OM}$•$\overrightarrow{ON}$=0£¬¹ýµãA£¨4£¬0£©×÷MNµÄ´¹ÏßÓëÅ×ÎïÏß½»ÓÚµãP¡¢QÁ½µã£¬ÔòËıßÐÎMPNQÃæ»ýµÄ×îСֵΪ£¨¡¡¡¡£©
A£®80B£®100C£®120D£®160

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=-x3+x2£¨x¡ÊR£©£¬g£¨x£©Âú×ãg¡ä£¨x£©=$\frac{a}{x}$£¨a¡ÊR£¬x£¾0£©£¬ÇÒg£¨e£©=a£¬ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨1£©ÒÑÖªh£¨x£©=e1-x•f£¨x£©£¬Çóh£¨x£©ÔÚ£¨1£¬h£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©É躯ÊýF£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬x£¼1}\\{g£¨x£©£¬x¡Ý1}\end{array}\right.$£¬OÎª×ø±êÔ­µã£¬Èô¶ÔÓÚy=F£¨x£©ÔÚx¡Ü-1ʱµÄͼÏóÉϵÄÈÎÒ»µãP£¬ÔÚÇúÏßy=F£¨x£©£¨x¡ÊR£©ÉÏ×Ü´æÔÚÒ»µãQ£¬Ê¹µÃ$\overrightarrow{OP}$•$\overrightarrow{OQ}$£¼0£¬ÇÒ$\overrightarrow{PQ}$µÄÖеãÔÚyÖáÉÏ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÎªÁ˲μӻ¯Ñ§¾ºÈü£¬Ä³Ð£Ôڼס¢ÒÒÁ½¸ö»¯Ñ§Ìس¤Ð¡×éÖзֱðÑ¡³ö5ÃûѧÉú²Î¼Ó±ÈÈü£¬ËûÃÇÈ¡µÃµÄ³É¼¨£¨Âú·Ö100·Ö£©µÄ¾¥Ò¶Í¼ÈçͼËùʾ£º
£¨1£©·Ö±ð¼ÆËã¼×¡¢ÒÒÁ½¸ö×éÖÐ5ÃûѧÉú³É¼¨µÄƽ¾ùÊýºÍ·½²î£¬¸ù¾Ý½á¹û£¬ÄãÈÏΪӦ¸ÃÑ¡ÅÉÄÄÒ»¸ö×é²Î¼Ó±ÈÈü£»
£¨2£©Óüòµ¥Ëæ»ú³éÑù·½·¨´ÓÒÒ×é5ÃûͬѧÖгéÈ¡2Ãû£¬ËûÃǵijɼ¨×é³ÉÒ»¸öÑù±¾£¬Çó³éÈ¡µÄ2Ãûͬѧ³É¼¨µÄ²îÖµÖÁÉÙÊÇ4·ÖµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ö´ÐÐÈçͼËùʾ¿òͼ£¬ÊäÈëm=153£¬n=119£¬Êä³ömµÄֵΪ£¨¡¡¡¡£©
A£®2B£®17
C£®34D£®ÒÔÉϴ𰸶¼²»ÕýÈ·

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸