精英家教网 > 高中数学 > 题目详情
7.直线$\sqrt{3}$x-ysinθ+2=0的倾斜角的取值范围是[$\frac{π}{3}$,$\frac{2π}{3}$].

分析 利用直线的倾斜角与斜率的关系,即可得出结论.

解答 解:设直线$\sqrt{3}$x-ysinθ+2=0的倾斜角为α,
则|tanα|=|$\frac{\sqrt{3}}{sinθ}$|≥$\sqrt{3}$
∴α∈[$\frac{π}{3}$,$\frac{2π}{3}$].
故答案为:[$\frac{π}{3}$,$\frac{2π}{3}$].

点评 本题考查直线的倾斜角与斜率的关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设全集U={1,2,3,4,5,6,7,8},A⊆U,B⊆U,且满足A∩B={3},(∁UB)∩A={1,2},(∁UA)∩B={4,5},则∁U(A∪B)=(  )
A.{6,7,8}B.{7,8}C.{5,7,8}D.{5,6,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,正方形ABCD的边长为2$\sqrt{2}$,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,且FO⊥平面ABCD,FO=$\sqrt{3}$.
(1)求BF与平面ABCD所成的角的正切值;
(2)求三棱锥O-ADE的体积;
(3)求证:平面AEF⊥平面BCF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),且x∈[0,$\frac{π}{2}$],若f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$-λ|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为-$\frac{3}{2}$,则λ=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a=x,b=1,B=30°,若此三角形只有一解,则x的取值范围是(  )
A.2B.0<x≤1C.2或0<x≤1D.1≤x≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率是$\frac{{\sqrt{3}}}{2}$,且过点$P(\sqrt{3},\frac{1}{2})$.
(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为(  )
A.3B.4C.4.5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{2-x}{x-1}$,则函数f(x)的递减区间是(-∞,1),(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)满足条件:$\left\{\begin{array}{l}x≥0\\ x-y≥0\\ 2x+y-k≤0\end{array}\right.$,若z=x+3y的最大值为8,则k的值为(  )
A.-6B.6C.8D.不确定

查看答案和解析>>

同步练习册答案