精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),且x∈[0,$\frac{π}{2}$],若f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$-λ|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为-$\frac{3}{2}$,则λ=$\frac{3\sqrt{2}}{4}$.

分析 运用向量数量积的坐标表示和向量的平方即为模的平方,结合二倍角公式,化简f(x),可得f(x)=2cos2$\frac{x}{2}$-2λcos$\frac{x}{2}$-1,令t=cos$\frac{x}{2}$,$\frac{\sqrt{2}}{2}$≤t≤1,即有y=2t2-2λt-1=2(t-$\frac{1}{2}$λ)2-1+$\frac{1}{2}$λ2,讨论对称轴和区间[$\frac{\sqrt{2}}{2}$,1]的关系,结合单调性,可得最小值,解方程可得所求值.

解答 解:$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),
可得$\overrightarrow{a}$•$\overrightarrow{b}$=cos$\frac{3}{2}$xcos$\frac{x}{2}$+sin$\frac{3}{2}$xsin$\frac{x}{2}$=cos($\frac{3}{2}$x-$\frac{1}{2}$x)=cosx,
|$\overrightarrow{a}$+$\overrightarrow{b}$|2=$\overrightarrow{a}$2+$\overrightarrow{b}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$=cos2$\frac{3}{2}$x+sin2$\frac{3}{2}$x+cos2$\frac{x}{2}$+sin2$\frac{x}{2}$+2cosx
=2+2cosx=2•2cos2$\frac{x}{2}$,x∈[0,$\frac{π}{2}$],
即|$\overrightarrow{a}$+$\overrightarrow{b}$|=2cos$\frac{x}{2}$,
则f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$-λ|$\overrightarrow{a}$+$\overrightarrow{b}$|=cosx-2λcos$\frac{x}{2}$
=2cos2$\frac{x}{2}$-2λcos$\frac{x}{2}$-1,
t=cos$\frac{x}{2}$,$\frac{\sqrt{2}}{2}$≤t≤1,
即有y=2t2-2λt-1=2(t-$\frac{1}{2}$λ)2-1+$\frac{1}{2}$λ2
当$\frac{1}{2}$λ≥1即λ≥2时,函数y在[$\frac{\sqrt{2}}{2}$,1]递减,可得最小值为1-2λ,
由1-2λ=-$\frac{3}{2}$,解得λ=$\frac{5}{4}$<2,不成立;
当$\frac{1}{2}$λ≤$\frac{\sqrt{2}}{2}$即λ≤$\sqrt{2}$时,函数y在[$\frac{\sqrt{2}}{2}$,1]递增,可得最小值为-$\sqrt{2}$λ,
由-$\sqrt{2}$λ=-$\frac{3}{2}$,解得λ=$\frac{3\sqrt{2}}{4}$<$\sqrt{2}$,成立;
当$\frac{\sqrt{2}}{2}$<$\frac{1}{2}$λ<1,即$\sqrt{2}$<λ<2时,函数的最小值为-1+$\frac{1}{2}$λ2=-$\frac{3}{2}$,
可得λ∈∅.
综上可得,λ=$\frac{3\sqrt{2}}{4}$.
故答案为:$\frac{3\sqrt{2}}{4}$.

点评 本题考查向量数量积的坐标表示和性质:向量的平方即为模的平方,考查三角函数的恒等变换,运用换元法和二次函数的最值的求法,以及分类讨论思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知x,y满足约束条件$\left\{\begin{array}{l}2x+5y\;≥10\\ 2x-3y\;≥-6\\ 2x+y\;≤10\end{array}\right.$,则 $\frac{y+1}{x+1}$ 的取值范围[$\frac{1}{6}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边中线的交点,若$\overrightarrow{GA}$+(a+b)$\overrightarrow{GB}$+c$\overrightarrow{GC}$=$\overrightarrow{0}$,且$\frac{1}{a}$+$\frac{2}{b}$≥cos2x-msinx(x∈R)恒成立,则实数m的取值范围为(  )
A.(-4,4)B.(4,4+2$\sqrt{2}$]C.[-4-2$\sqrt{2}$,-4)D.[-4-2$\sqrt{2}$,4+2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-lnx.
(1)求函数y=f(x)的单调区间;
(2)设g(x)=x-t,若函数h(x)=g(x)-f(x)在[$\frac{1}{e}$,e]上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,f'(x)>0(其中f'(x)为f(x)的导函数),则f(x)>0的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a>b,则下列不等式一定能成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a3>b3C.$\frac{1}{a-b}$>$\frac{1}{a+b}$D.a4>b4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线$\sqrt{3}$x-ysinθ+2=0的倾斜角的取值范围是[$\frac{π}{3}$,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,PA⊥面ABCD,点Q在棱PA上,且PA=4PQ=4,AB=2,CD=1,AD=$\sqrt{2}$,∠CDA=∠BAD=$\frac{π}{2}$,M,N分别是PD,PB的中点.
(1)求证:MQ∥面PCB;
(2)求截面MCN与底面ABCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在厄尔尼诺现象中,经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度xi和产卵数yi(i=1,2,…,7)的7组观测数据作了初步处理,得到如图的散点图及一些统计量表.
$\overline{x}$$\overline{y}$$\overline{z}$$\sum_{i=1}^{7}$(xi-$\overline{x}$)2$\sum_{i=1}^{7}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{7}$(xi-$\overline{x}$)(zi-$\overline{z}$)
27.481.313.61482935.1340
表中zi=lnyi,$\overline{z}$=$\frac{1}{7}$$\sum_{i=1}^{7}$zi
(1)根据散点图判断,y=a+bx与y=c1e${\;}^{{c}_{2}x}$哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求y关于x回归方程;
②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny-9.43)+175,当温度x为何值时,培养成本的预报值最小?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

同步练习册答案