精英家教网 > 高中数学 > 题目详情
二次曲线,m∈[-3,-1]时,该曲线的离心率e的取值范围是
[     ]
A.
B.
C.
D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•宿州三模)已知二次曲线
x2
4
+
y2
m
=1,则当m∈[-2,-1]
时,该曲线的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M过定点D(0,2),圆心M在二次曲线y=
1
4
x2
上运动.
(1)若圆M与y轴相切,求圆M方程;
(2)已知圆M的圆心M在第一象限,半径为
5
,动点Q(x,y)是圆M外一点,过点Q与 圆M相切的切线的长为3,求动点Q(x,y)的轨迹方程;
(3)若圆M与x轴交于A,B两点,设|AD|=a,|BD|=b,求
b
a
的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-
5
,0),F2(
5
,0)
满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•杨浦区二模)(文)设F1、F2分别为椭圆C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且
PF1
PF2
=0
,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.

查看答案和解析>>

同步练习册答案