精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

【答案】
(1)证明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,

又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,

∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE


(2)以A为原点,以 为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,

则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0), ,M(2λ,2λ,2﹣2λ)

设平面PFM的法向量 ,即

设平面BFM的法向量

,解得


【解析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II) 以A为原点,以 为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴的交点中相邻两个交点的距离是,当取得最小值

(1)求函数的解析式;

(2)求函数在区间的最大值和最小值;

(3)若函数的零点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, 为线段(含端点)上一个动点,设对于函数,给出以下三个结论:

①当时,函数的值域为

②对于任意的,均有

③对于任意的,函数的最大值均为4.

其中所有正确的结论序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足(1﹣a10085+2016(1﹣a1008)=1,(1﹣a10095+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn , 则( )
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且.

(Ⅰ)证明:数列为等差数列,并求数列的通项公式;

(Ⅱ)若记为满足不等式的正整数的个数,设,求数列的最大项与最小项的值.

【答案】(1)见解析;(2)最大项为最小项为.

【解析】试题分析:(Ⅰ)两边取倒数,移项即可得出故而数列为等差数列,利用等差数列的通项公式求出,从而可得出;(Ⅱ)根据不等式,,得,又,从而,当为奇数时,单调递减,;当为偶数时单调递增,综上的最大项为,最小项为.

试题解析:(Ⅰ)由于,则

,则,即为常数

∴数列是以1为首项为公比的等比数列

从而.

(Ⅱ)

从而

为奇数时单调递减

为偶数时单调递增

综上的最大项为最小项为.

型】解答
束】
22

【题目】已知向量 ,若函数的最小正周期为,且在区间上单调递减.

(Ⅰ)求的解析式;

(Ⅱ)若关于的方程有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当 时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为 (t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线C1上点P的极角为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级。最近北斗三号工程耗资元建成一大型设备,已知这台设备维修和消耗费用第一年为元,以后每年增加元(是常数),用表示设备使用的年数,记设备年平均维修和消耗费用为,即 (设备单价设备维修和消耗费用)设备使用的年数.

(1)求关于的函数关系式;

(2)当时,求这种设备的最佳更新年限.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线C1 t为参数),C2 (θ为参数),
(Ⅰ)当α= 时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

同步练习册答案