精英家教网 > 高中数学 > 题目详情

【题目】2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级。最近北斗三号工程耗资元建成一大型设备,已知这台设备维修和消耗费用第一年为元,以后每年增加元(是常数),用表示设备使用的年数,记设备年平均维修和消耗费用为,即 (设备单价设备维修和消耗费用)设备使用的年数.

(1)求关于的函数关系式;

(2)当时,求这种设备的最佳更新年限.

【答案】(1) ;(2) 这种设备的最佳更新年限为15年.

【解析】试题分析:(1)由题意,易发现每年的维修和消耗费用为等差数列,可根据等差数列前项和公式计算,从而问题可得解;(2)由题意,将的值代入(1)的关系式,得到关于的函数关系,再由基本不等式求出其最值,从而问题得于解决.

试题解析:(1)由题意,设备维修和消耗费用构成以为首项,为公差的等差数列,

因此年平均维修和消耗费用为

于是有

(2)由(1)可知,当时,

当且仅当

答:这种设备的最佳更新年限为15年.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数满足:在定义域内存在实数,使得成立,则称函数为“的饱和函数”.给出下列四个函数:①;②; ③;④.其中是“的饱和函数”的所有函数的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1﹣an=2,a1=﹣5,则|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a>0且a≠1,函数f(x)=x2-(a+1)xalnx.

(1)当a=2时,求曲线yf(x)在(3,f(3))处切线的斜率;

(2)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当 时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为常数,e=2.71828……是自然对数的底数).
(1)当 时,求函数 的单调区间;
(2)若函数 内存在两个极值点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

-1

1

3

1

-1

1

3

(1)根据表格提供的数据画出函数的图像并求出函数解析式;

(2)根据(1)的结果,若函数的周期为,当时,方程恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
(1)求λ的值及数列{an}的通项公式;
(2)设 ,且数列{bn}的前n项和为Sn , 求S2n

查看答案和解析>>

同步练习册答案