精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足an+1﹣an=2,a1=﹣5,则|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

【答案】C
【解析】解:∵an+1﹣an=2,a1=﹣5,∴数列{an}是公差为2的等差数列. ∴an=﹣5+2(n﹣1)=2n﹣7.
数列{an}的前n项和Sn= =n2﹣6n.
令an=2n﹣7≥0,解得
∴n≤3时,|an|=﹣an
n≥4时,|an|=an
则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.
故选:C.
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,过点P(2,1)的直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,已知直线l与曲线C交于A、B两点.
(1)求曲线C的直角坐标方程;
(2)求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=. ,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B两点,且 共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积S△AOB= 时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣|2x+1|的最大值为m
(1)作函数f(x)的图象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

(1)求证:对,直线与圆总有两个不同的交点

(2)是否存在实数,使得圆上有四点到直线的距离为?若存在,求出的范围;若不存在,说明理由;

(3)求弦的中点的轨迹方程,并说明其轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
(1)求λ的值及数列{an}的通项公式;
(2)设 ,且数列{bn}的前n项和为Sn , 求S2n

查看答案和解析>>

同步练习册答案