精英家教网 > 高中数学 > 题目详情
已知圆C:(x-2)2+y2=4,点P是圆M:(x-7)2+y2=1上的动点,过P作圆C的切线,切点为E、F,则
CE
CF
的最大值是
 
分析:设出∠ECF=2α,表示出数量积,数量积中有cosα,cosα=
x
|PC|
=
2
|PC|
,确定|PC|的范围,可求出数量积的最值.
解答:解::(x-2)2+y2=4的圆心C(2,0),半径等于2,圆M (x-7)2+y2=1,
圆心M(7,0),半径等于1.
∵|CM|=5>2+1,故两圆相离.
设∠ECF=2α,则
CE
CF
=
|CE
|•
|CF
|
cos2α=4cos2α=8cos2α-4.
在Rt△PCE中,cosα=
x
|PC|
=
2
|PC|
,由圆的几何性质得|PC|≤|MC|+1=5+1=6,|PC|≥|MC|-1=5-1=4,
所以
1
3
≤cosα≤
1
2
,由此可得
CE
CF
≤-2.
故答案为:-2.
点评:本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+(y-4)2=4,直线l1过原点O(0,0).
(1)若l1与圆C相切,求l1的方程;
(2)若l1与圆C相交于不同两点P、Q,线段PQ的中点为M,又l1与l2:x+2y+1=0的交点为N,求证:OM•ON为定值;
(3)求问题(2)中线段MN长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+2)2+y2=24,定点A(2,0),M为圆C上一动点,点P在AM上,点N在CM上(C为圆心),且满足
.
AM
= 2
.
AP
.
NP
-
.
AM
=0
,设点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点B(m,0)作倾斜角为
5
6
π
的直线l交曲线E于C、D两点.若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+y2=1,D是y轴上的动点,直线DA、DB分别切圆C于A、B两点.
(1)如果|AB|=
4
2
3
,求直线CD的方程;
(2)求动弦AB的中点的轨迹方程E;
(3)直线x-y+m=0(m为参数)与方程E交于P、Q两个不同的点,O为原点,设直线OP、OQ的斜率分别为KOP,KOQ,试将KOP•KOQ表示成m的函数,并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+(y-1)2=2,过原点的直线l与圆C相切,则所有过原点的切线的斜率之和为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+(y-1)2=25,过点M(-2,4)的圆C的切线l1与直线l2:ax+3y+2a=0平行,则l1与l2间的距离是(  )
A、
8
5
B、
2
5
C、
28
5
D、
12
5

查看答案和解析>>

同步练习册答案