精英家教网 > 高中数学 > 题目详情
若正实数x、y满足条件lg(x+y)=1,则的最小值为(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴模拟)已知函数f(x)=e2x-2a
x
 
2
+2e2x
,其中e为自然对数的底数.
(I)若函数f(x)在[1,2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=f(x)在点P(1,f(1))处的切线为l.试问:是否存在正实数a,使得函数y=f(x)的图象被点P分割成的两部分(除点P外)完全位于切线l的两侧?若存在,请求出a满足的条件,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省绍兴市高三教学质量调测理科数学试卷(解析版) 题型:解答题

(本小题满分15分)

已知函数其中e为自然对数的底数。

(I)若函数f (x)在[1, 2]上为单调增函数,求实数a的取值范围;

(II)设曲线y= f (x)在点P(1, f (1))处的切线为l .试问:是否存在正实数a ,使得函数y= f (x)的图象被点P 分割成的两部分(除点P 外)完全位于切线l 的两侧?若存在,请求出a 满足的条件,若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式,其中e为自然对数的底数.
(I)若函数f(x)在[1,2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=f(x)在点P(1,f(1))处的切线为l.试问:是否存在正实数a,使得函数y=f(x)的图象被点P分割成的两部分(除点P外)完全位于切线l的两侧?若存在,请求出a满足的条件,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

同步练习册答案