精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
ax3+(a+d)x2+(a+2d)x+d
,g(x)=ax2+2(a+2d)x+a+4d,其中a>0,d>0,设x0为f(x)的极小值点,x1为g(x)的极值点,g(x2)=g(x3)=0,并且x2<x3,将点(x0,f(x0)),(x1,g(x1),(x2,0)(x3,0)依次记为A,B,C,D.
(1)求x0的值;
(2)若四边形APCD为梯形且面积为1,求a,d的值.
(1)f′(x)=ax2+2(a+d)x+a+2d=(x+1)(ax+a+2d),
令f′(x)=0,
由a≠0得x=-1或x=-1-
2d
a

∵a>0,d>0.
-1-
2d
a
<-1

-1-
2d
a
<x<-1
时,f′(x)<0,
当x>-1时f′(x)>0,
所以f(x)在x=-1处取极小值,即x0=-1
(2)g(x)=ax2+(2a+4d)x+a+4d
∵a>0,x∈R
∴g(x)在x=-
2a+4d
2a
=-1-
2d
a
处取得极小值,即x1=-1-
2d
a

由g(x)=0,即(ax+a+4d)(x+1)=0
∵a>0,d>0,x2<x3
x2=-1-
4d
a
x1=-1

f(x0) =f(-1)=-
1
3
a

g(x1) =g(-1-
2d
a
) =-
4d2
a

A(-1,-
1
3
a)
B(-1-
2d
a
,-
4d2
a
)
C(-1-
4d
a
,0)
,D(-1,0)
由四边形ABCD是梯形及BC与AD不平行,得ABCD.
-
a
3
=-
4d2
a
即a2=12d2
由四边形ABCD的面积为1,得
1
2
(|AB|+|CD|)•|AD|=1

1
2
(
4d
a
+
2d
a
) • 
a
3
=1
得d=1,
从而a2=12得a=2
3
,d=1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案