精英家教网 > 高中数学 > 题目详情

【题目】已知三个顶点坐标分别为:直线经过点

(1)外接圆的方程

(2)若直线相交于两点,且,求直线的方程.

【答案】(1)(x-1)2+(y-2)2=4,或x2y2-2x-4y+1=0.

(2) x=03x+4y-16=0.

【解析】

法一:设圆的方程为,根据条件列出方程组,解出即可

法二:根据的横坐标相同设,由半径相等和两点之间的距离公式列出方程求出,即可求得的方程

对直线的斜率存在问题分类讨论,根据点到直线的距离公式和弦长公式列出方程,求出直线的斜率,即可得到直线的方程

(1)法一:设⊙M的方程为x2y2DxEyF=0,

则由题意得 解得

∴⊙M的方程为x2y2-2x-4y+1=0,或(x-1)2+(y-2)2=4.

法二:∵A(1,0),B(1,4)的横坐标相同,故可设M(m,2),

MA2MC2(m-1)2+4=(m-3)2,解得m=1,

∴⊙M的方程为(x-1)2+(y-2)2=4,或x2y2-2x-4y+1=0.

(2)当直线lx轴垂直时,l方程为x=0,它截⊙M得弦长恰为2

当直线l的斜率存在时,设lykx+4,

圆心到直线ykx+4的距离为由勾股定理得

解得故直线l的方程为x=03x+4y-16=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);

A班

6 6.5 7 7.5 8

B班

6 7 8 9 10 11 12

C班

3 4.5 6 7.5 9 10.5 12 13.5


(1)试估计C班的学生人数;
(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(3)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记 ,表格中数据的平均数记为 ,试判断 的大小,(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2513后成为等比数列{bn}中的b3b4b5

)求数列{bn}的通项公式;

)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(  )

A.56
B.60
C.120
D.140

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:
(sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需确定加工零件所花费的时间,为此做了4次试验,得到的数据如下:

零件的个数/

2

3

4

5

加工的时间/小时

2.5

3

4

4.5

若加工时间与零件个数之间有较好的相关关系.

(1)求加工时间与零件个数的线性回归方程

(2)试预报加工10个零件需要的时间.

附录:参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(1)求数列{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(-1,2)且与两坐标轴的正半轴所围成的三角形面积等于

(1)求直线l的方程.

(2)求圆心在直线l上且经过点M(2,1),N(4,-1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在R上的函数,对任意实数x,有f(1﹣x)=x2﹣3x+3.

(1)求函数的解析式;

(2)若函数在g(x)=f(x)﹣(1+2m)x+1(mR)在上的最小值为﹣2,求m的值.

查看答案和解析>>

同步练习册答案