精英家教网 > 高中数学 > 题目详情

已知△ABC中,试判断△ABC的形状.


解:由已知,得

.

由正弦定理知.∴ sinCcosC=sinBcosB,即sin2C=sin2B,因为∠B、∠C均为△ABC的内角.所以2∠C=2∠B或2∠C+2∠B=180°,所以∠B=∠C或∠B+∠C=90°,故三角形为等腰或直角三角形.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知等比数列{an}是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两个根,则S6=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


 我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度.公民在就业的第一年交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…,an是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…,以Tn表示到第n年所累计的储备金总额.

(1) 写出Tn与Tn-1(n≥2)的递推关系式;

(2) 求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:


 设不等式组所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).

(1) 求数列{an}的通项公式;

(2) 记数列{an}的前n项和为Sn,且Tn.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


在△ABC中,a=,b=,B=45°.求角A、C和边c.

查看答案和解析>>

科目:高中数学 来源: 题型:


在△ABC中,若9cos2A-4cos2B=5,则=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.

查看答案和解析>>

科目:高中数学 来源: 题型:


 如图,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC.问:点B在什么位置时,四边形OACB面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:


 已知sin,则cos=________.

查看答案和解析>>

同步练习册答案