精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则
不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集(
A.(﹣2018,﹣2015)
B.(﹣∞,﹣2016)
C.(﹣2016,﹣2015)
D.(﹣∞,﹣2012)

【答案】A
【解析】解:构造函数g(x)=x3f(x),g′(x)=x2(3f(x)+xf′(x));
∵3f(x)+xf′(x)>0,x2>0;
∴g′(x)>0;
∴g(x)在(﹣∞,0)上单调递增;
g(x+2015)=(x+2015)3f(x+2015),g(﹣3)=﹣27f(﹣3);
∴由不等式(x+2015)3f(x+2015)+27f(﹣3)>0得:
(x+2015)3f(x+2015)>﹣27f(﹣3);
∴g(x+2015)>g(﹣3);
∴x+2015>﹣3,且x+2015<0;
∴﹣2018<x<﹣2015;
∴原不等式的解集为(﹣2018,﹣2015).
故选A.
根据条件,构造函数g(x)=x3f(x),利用函数的单调性和导数之间的关系即可判断出该函数在(﹣∞,0)上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集U={1,2,3,4,5,6,7},A={1,3,6},B={2,3,5,7},则A∩(UB)等于(
A.{3,4}
B.{1,6}
C.{2,5,7}
D.{1,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>b,c为实数,下列不等式成立是(
A.ac>bc
B.ac<bc
C.ac2>bc2
D.ac2≥bc2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在R上是单调函数,且满足对任意x∈R,都有f[f(x)﹣3x]=4,则f(2)的值是(
A.4
B.8
C.10
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数f(x)在区间[0,a](a>0)上是单调函数,且f(0)f(a)<0,则方程f(x)=0在区间[﹣a,a]内根的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)为R上的偶函数,当x≥0时,f(x)=log2(x+2)﹣3,则f(6)= ,f(f(0))=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数g(x)=2x+2﹣x+|x|,则满足g(2x﹣1)<g(3)的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于直线a,b及平面α,β,下列命题中正确的是(
A.若a∥α,α∩β=b,则a∥b
B.若a∥α,b∥α,则a∥b
C.若a⊥α,a∥β,则α⊥β
D.若a∥α,b⊥a,则b⊥α

查看答案和解析>>

同步练习册答案