精英家教网 > 高中数学 > 题目详情
计算由曲线y2=x,y=x2所围成图形的面积S.
分析:由题意,可作出两个函数y=
x
与y=x2的图象,由图象知阴影部分即为所求的面积,本题可用积分求阴影部分的面积,先求出两函数图象交点A的坐标,根据图象确定出被积函数
x?
-x2
与积分区间[0,1],计算出定积分的值,即可出面积曲线y2=x,y=x2所围成图形的面积S
解答:解:作出如图的图象…(2分)
联立
y2=x
y=x2
 解得
x=0
y=0
x=1
y=1
…(5分)
即点A(1,1)
所求面积为:S=
1
0
(
x
-x2)dx
=(
2
3
x
3
2
1
3
x3)
|
1
0
=
2
3
-
1
3
=
1
3
…(10分)
答:所围成图形的面积S=
1
3
点评:本题考点是定积分在求面积中的应用,考查了作图的能力及利用积分求面积,解题的关键是确定出被积函数与积分区间,熟练掌握积分的运算,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算由曲线y2=2x,直线y=x-4所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算由曲线y2=x,y=x2所围成图形的面积S.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

计算由曲线y2=x,y=x3所围成图形的面积S。

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南师大附中分校高二(下)期中数学试卷(理科)(解析版) 题型:解答题

计算由曲线y2=x,y=x2所围成图形的面积S.

查看答案和解析>>

同步练习册答案