精英家教网 > 高中数学 > 题目详情

已知f(x)、g(x)都是定义在R上的函数,f'(x)g(x)+f(x)g'(x)<0,f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=数学公式.在区间[-3,0]上随机取一个数x,f(x)g(x)的值介于4到8之间的概率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:根据函数积的导数公式,可知函数f(x)g(x)在R上是减函数,根据f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=.我们可以求出函数解析式,从而可求出f(x)g(x)的值介于4到8之间时,变量的范围,利用几何概型的概率公式即可求得.
解答:由题意,∵f'(x)g(x)+f(x)g'(x)<0,
∴[f(x)g(x)]'<0,
∴函数f(x)g(x)在R上是减函数
∵f(x)g(x)=ax
∴0<a<1
∵f(1)g(1)+f(-1)g(-1)=


∵f(x)g(x)的值介于4到8
∴x∈[-3,-2]
∴在区间[-3,0]上随机取一个数x,f(x)g(x)的值介于4到8之间的概率是
故选A.
点评:本题的考点是利用导数确定函数的单调性,主要考查积的导数的运算公式,考查几何概型,解题的关键是确定函数的解析式,利用几何概型求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有穷数列{
f(n)
g(n)
},(n=1,2,…,10)
中任取前k项相加,则前k项和大于
15
16
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g'(x)>f'(x)g(x),f(x)=ax•g(x),(a>0且a≠1)
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,令an=
f(n)
g(n)
,则使数列{an}的前n项和Sn超过
15
16
的最小自然数n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,对于有穷数列
f(n)
g(n)
=(n=1,2,…0)
,任取正整数k(1≤k≤10),则前k项和大于
15 
16
的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,且f(x)=g(x)ax(a>0且a≠1),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,则a的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

同步练习册答案