精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,$f(x)=\left\{\begin{array}{l}{2^{|{x-1}|}}-1\;\;\;,\;0<x≤2\\ \frac{1}{2}f({x-2})\;\;,\;x>2\end{array}\right.$,则函数g(x)=4f(x)-1的零点的个数为10.

分析 由g(x)=4f(x)-1=0,得f(x)=$\frac{1}{4}$,作出函数f(x)的表达式,利用数形结合即可得到结论.

解答 解:由g(x)=4f(x)-1=0,得f(x)=$\frac{1}{4}$,
要判断函数g(x)的零点个数,则根据f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,
只需要判断当x>0时f(x)=$\frac{1}{4}$的个数即可,
当0<x≤2时,f(x)=2|x-1|-1∈[0,1],
当2<x≤4时,0<x-2≤2时,f(x)=$\frac{1}{2}$f(x-2)=$\frac{1}{2}$[2|x-3|-1]∈[0,$\frac{1}{2}$],
当4<x≤6时,2<x-2≤4时,f(x)=$\frac{1}{2}$f(x-2)=$\frac{1}{4}$[2|x-5|-1]∈[0,$\frac{1}{4}$],
当6<x≤8时,4<x-2≤6时,f(x)=$\frac{1}{2}$f(x-2)=$\frac{1}{8}$[2|x-7|-1]∈[0,$\frac{1}{8}$],
作出函数f(x)在(0,8)上的图象,由图象可知f(x)=$\frac{1}{4}$有5个根,
则根据偶函数的对称性可知f(x)=$\frac{1}{4}$在定义域(-∞,0)∪(0,+∞)上共有10个根,
即函数g(x)=4f(x)-1的零点个数为10个,
故答案为:10.

点评 本题主要考查函数零点的个数判断,利用函数和方程之间的关系转化为两个函数的交点个数问题,利用分段函数的表达式,作出函数f(x)的图象是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若数列{an}的前n项的和Sn=3an-2,则这个数列的通项公式为(  )
A.${a_n}={(\frac{3}{2})^{n-1}}$B.${a_n}=3×{(\frac{1}{2})^{n-1}}$C.an=3n-2D.${a_n}={3^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设集合A={a,b,c},B={0,1},则从A到B可以构成的映射有8个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在奥运会垒球比赛前,C国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°的方向把球击出,根据经验及测速仪的显示,通常情况下球速为游击手最大跑速的4倍,问按这样的布置,游击手能不能接着球?(如图所示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x2+2x+p=0},B={x|x≤0},A∩B≠∅,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.电视台在“欢乐今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众的来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运观众,有多少种不同的结果?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某地区预计从2015年初开始的第x月,商品A的价格f(x)=$\frac{1}{2}$(x2-12x+69)(x∈N,x≤12,价格单位:元),且第x月该商品的销售量g(x)=x+12(单位:万件).
(1)商品A在2015年的最低价格是多少?
(2)2015年的哪一个月的销售收入最少,最少是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对某种灯泡中随机地抽取200个样品进行使用寿命调查,结果如下:
寿命(天)频数频率
[100,200)200.10
[200,300)30y
[300,400)700.35
[400,500)x0.15
[500,600)500.25
合计2001
规定:使用寿命大于或等于500天的灯泡是优等品,小于300天是次品,其余的是正品.某人从灯泡样品中随机地购买了n(n∈N*)个,如果这n个灯泡的等级分布情况恰好与从这200个样品中按三个等级分层抽样所得的结果相同,则n的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(2015)=-$\sqrt{2}$.

查看答案和解析>>

同步练习册答案