精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若直线l与圆(x+1)2+y2=1相切,求a的值;
(2)求函数f(x)的单调区间(a∈R).
分析:(1)求导函数,求出切线的斜率,切点的坐标,根据切点和斜率写出切线的方程,又切线l与已知圆相切,利用点到直线的距离公式表示出圆心到切线的距离d,让d等于圆的半径列出关于a的方程,求出方程的解即可得到a的值;
(2)确定f(x)的定义域,再分类讨论,利用导函数的正负即可得到函数的单调区间.
解答:解:(1)由题意可得,f′(x)=a+
1
x-2

把x=1代入f(x)得:f(1)=a,则切点坐标为(1,a),
把x=1代入导函数中得:f′(1)=a-1,则切线的斜率k=a-1,
所以切线方程l为:y-a=(a-1)(x-1),即(a-1)x-y+1=0,
又圆心坐标(-1,0),半径r=1,由l与圆(x+1)2+y2=1相切,则圆心到直线l的距离d=
|1-a+1|
(a-1)2+1
=1,解得a=1;
(2)由2-x>0,解得x<2,得到f(x)的定义域为(-∞,2),
①当a≤0时,f′(x)=a+
1
x-2
<0,函数单调减,
∴函数的单调减区间为(-∞,2),
②当a>0时,f′(x)=a+
1
x-2
>0,解得x<2-
1
a

2-
1
a
<2
,∴函数的单调增区间为(-∞,2-
1
a
)

f′(x)=a+
1
x-2
<0,解得x>2-
1
a

∴函数的单调减区间为(2-
1
a
,2)
点评:本题考查学生会利用导数求切线上过某点切线方程的斜率,会利用导函数的正负得到函数的单调区间,考查分类讨论的数学思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案