精英家教网 > 高中数学 > 题目详情
1.如图,一人在某山脚B的正西方向A处测得山顶C的仰角为45°,再向正东方向行进(3-$\sqrt{3}$)百米后到D,测得山顶C在D的北偏东30°,则该山BC的高度为(  )百米.
A.1B.2C.3D.4

分析 由题意可得:AB=BC,tan∠CDB=tan60°=$\sqrt{3}$=$\frac{CB}{DB}$,解得DB=$\frac{CB}{\sqrt{3}}$,由AD+DB=3$-\sqrt{3}$+$\frac{CB}{\sqrt{3}}$=BC,即可解得BC的值.

解答 解:由题意可得:∠CAB=45°,AD=3-$\sqrt{3}$,∠CDB=60°,∠CBA=90°,
可得:AB=BC,
故在△CDB中,tan∠CDB=tan60°=$\sqrt{3}$=$\frac{CB}{DB}$,解得DB=$\frac{CB}{\sqrt{3}}$,
所以:AD+DB=3$-\sqrt{3}$+$\frac{CB}{\sqrt{3}}$=BC,解得:BC=3.
故选:C.

点评 本题考查了解直角三角形的应用,仰角俯角问题的应用,根据三角函数的定义用CB表示出DB是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若椭圆$\frac{{x}^{2}}{3m+12}$-$\frac{{y}^{2}}{m}$=1的准线平行于y轴,则m的取值范围是-3<m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,点P为E上一动点,∠F1PF2=2θ.
(1)证明:当点P为短轴端点时∠F1PF2取最大值.
(2)若∠F1PF2=90°,求∠F1PF2的面积;
(3)求证:△F1PF2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F与抛物线y2=4x的焦点重合,D(1,$\frac{3}{2}$)是椭圆上一点,椭圆左顶点为C,过F的直线与椭圆交于A、B两点,直线CA、CB与直线1:x=4交于点M、N.
(I)求椭圆的方程;
(Ⅱ)求$\overrightarrow{FM}$•$\overrightarrow{FN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.抛物线C:y=x2在点P处的切线l分别交x轴、y轴于不同的两点A、B,$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{MB}$.当点P在C上移动时,点M的轨迹为D.
(1)求曲线D的方程;
(2)设直线l与曲线D的另一个交点为N,曲线D在点M、N处的切线分别为m、n,直线m、n相交于点Q.证明:PQ平行于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当x∈[-1,t]时,函数f(x)=|x-2|+|5-x|的值域为[3,9],则实数t的取值范围是(  )
A.[2,8]B.[2,4]C.[4,8]D.[-1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mx-(m+2)lnx-$\frac{2}{x}$,g(x)=x2+mx+1,其中m<0.
(1)求f(x)的单调区间;
(2)若存在x1、x2∈[1,2],使得f(x1)-g(x2)≥1成立.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=lnx+a(x2-1)-2(x-1).
(Ⅰ)若a=0时直线y=mx+1与曲线y=f(x)相切,求m的值;
(Ⅱ)已知(x-1)f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在空间直角坐标系中有一棱长为m的正方体ABCD-A1B1C1D1,E,F,G,分别为A1B1,B1C1,BB1的中点,H为△EFG的重心,求DH的长度.

查看答案和解析>>

同步练习册答案