精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,
AB=
2
AD,E是线段PD上的点,F是线段AB上的点,且
PE
ED
=
BF
FA
=λ(λ>0)

(1)判断EF与平面PBC的关系,并证明;
(2)当λ为何值时,DF⊥平面PAC?并证明.
分析:(1)作FG∥BC交CD于G,根据线段间的比例关系可得
PE
ED
=
CG
GD
,PC∥EG,得到平面PBC∥平面EFG,
从而得到EF∥平面PBC.
(2)当λ=1时,DF⊥平面PAC.证明∠AFD=∠CAD,AC⊥DF,PA⊥DF,可得 DF⊥平面PAC.
解答:解:(1)作FG∥BC交CD于G,连接EG,则
BF
FA
CG
GD
PE
ED
BF
FA
= λ
,∴
PE
ED
=
CG
GD

∴PC∥EG.又FG∥BC,BC∩PC=C,FG∩GE=G,∴平面PBC∥平面EFG.又EF不在平面PBC内,
∴EF∥平面PBC.
(2)当λ=1时,DF⊥平面PAC.
证明如下:∵λ=1,则F为AB的中点,又AB=
2
AD,AF=
1
2
AB

∴在 Rt△FAD 与 Rt△ACD中,tan∠AFD=
AD
AF
=
AD
2
2
AD
=
2
,tan∠CAD=
CD
AD
=
2
AD
AD
=
2

∴∠AFD=∠CAD,∴AC⊥DF,又PA⊥平面ABCD,DF?平面ABCD,
∴PA⊥DF,∴DF⊥平面PAC.
点评:本题考查证明线面平行、线面垂直的方法,直线与平面垂直的判定、性质的应用,判断λ=1时,DF⊥平面PAC,
是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案