精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.

(Ⅰ)证明:直线与直线的交点在椭圆上;

(Ⅱ)若过点的直线交椭圆于两点,关于轴的对称点(不共线),

问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.

 

【答案】

(Ⅰ)见解析;

(Ⅱ)直线经过轴上的点

【解析】(1)易求A、B、D、E、M的坐标,然后求出DE、BM的方程,两直线方程联立解方程组可求出其交点.再验证交点坐标满足椭圆方程,从而证明交点在椭圆上.

(2)先设出RS的方程,与椭圆方程联立,消y后得关于x的一元二次方程,设出交点R、S的坐标,表示出SK的方程,令y=0得到它与x轴的交点的模坐标,然后再借助直线RS的方程和韦达定理,证明x的值是常数即可.

解:(1)由题意,得

所以直线的方程,直线的方程为,------2分

,得

所以直线与直线的交点坐标为,---------------4分

因为,所以点在椭圆上.---------6分

(2)设的方程为,代入

,则

 

直线的方程为

代入上式得,设

所以直线经过轴上的点.---------12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案