精英家教网 > 高中数学 > 题目详情

(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.

已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.

(1)当时,求椭圆的方程;

(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;

(3)是否存在实数,使得的边长为连续的自然数.

解:(1)设椭圆的实半轴长为a,短半轴长为b,半焦距为c,

=1时,由题意得,a=2c=2,

所以椭圆的方程为.(4分)

(2)依题意知直线的斜率存在,设,由得,,由直线与抛物线有两个交点,可知.设,由韦达定理得,则(6分)又的周长为,所以,          (8分)

解得,从而可得直线的方程为        (10分)

(3)假设存在满足条件的实数

由题意得,所以椭圆的方程为

联立解得

所以

的边长分别为,显然

所以,故当时,使得的边长为连续的自然数.  (18分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)

在平行四边形中,已知过点的直线与线段分别相交于点。若

(1)求证:的关系为

(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。

(3)设函数上偶函数,当,又函数图象关于直线对称, 当方程上有两个不同的实数解时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012届上海市崇明中学高三第一学期期中考试试题数学 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列,如果存在一个正整数,使得对任意的)都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当是周期为的周期数列,当是周期为的周期数列。
(1)设数列满足),不同时为0),且数列是周期为的周期数列,求常数的值;
(2)设数列的前项和为,且
①若,试判断数列是否为周期数列,并说明理由;
②若,试判断数列是否为周期数列,并说明理由;
(3)设数列满足),,数列的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在,   说明理由;

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市高三第一学期期中考试试题数学 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)

对于数列,如果存在一个正整数,使得对任意的)都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当是周期为的周期数列,当是周期为的周期数列。

    (1)设数列满足),不同时为0),且数列是周期为的周期数列,求常数的值;

    (2)设数列的前项和为,且

①若,试判断数列是否为周期数列,并说明理由;

②若,试判断数列是否为周期数列,并说明理由;

    (3)设数列满足),,数列 的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在,    说明理由;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市十三校高三上学期第一次联考试题文科数学 题型:解答题

  (本题满分18分,第1小题满分5分,第2小题满分5分,第3小题满分8分)

已知函数,其中.

(1)当时,设,求的解析式及定义域;

(2)当时,求的最小值;

(3)设,当时,对任意恒成立,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)

设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.

(1)若,求证:该数列是“封闭数列”;

(2)试判断数列是否是“封闭数列”,为什么?

(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案