【题目】如图,在四棱锥
中,
,
,
且
,![]()
![]()
(1)证明:平面
平面
.
(2)若
为侧棱
的中点,求二面角
的正弦值.
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系
的原点为极点,
轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线
的参数方程为
,曲线
的极坐标方程为![]()
求直线
的普通方程与曲线
的直角坐标方程;
若把曲线
上给点的横坐标伸长为原来的
倍,纵坐标伸长为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,椭圆
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求经过椭圆
右焦点
且与直线
垂直的直线的极坐标方程;
(2)若
为椭圆
上任意-点,当点
到直线
距离最小时,求点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为:
(
为参数,已知直线
,直线
以坐标原点为极点,x轴正半轴为极轴,建立极坐标系.
(1)求曲线C以及直线
,
的极坐标方程;
(2)若直线
与曲线C分别交于O、A两点,直线
与曲线C分别交于O、B两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)设直线
与
,
轴的交点分别为
,
,若点
在曲线
位于第一象限的图象上运动,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)①求证:当
任意取值时,
的图像始终经过一个定点,并求出该定点坐标;
②若
的图像在该定点处取得极值,求
的值;
(2)求证:当
时,函数
有唯一零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
、
是三条不同的直线,
、
、
是三个不同的平面,给出下列四个命题:
①若
,
,
,
,
,则
;
②若
,
,则
;
③若
,
是两条异面直线,
,
,
,
且
,则
;
④若
,
,
,
,
,则
.
其中正确命题的序号是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知
是曲线
:
上的动点,将
绕点
顺时针旋转
得到
,设点
的轨迹为曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
,
的极坐标方程;
(2)在极坐标系中,点
,射线
与曲线
,
分别相交于异于极点
的
两点,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com