精英家教网 > 高中数学 > 题目详情
15.执行如图所示的程序框图,则输出的S的值为(  )
A.-2015B.2016C.2014D.-2017

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=-1+3-…+-2015+2016的值.

解答 解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是累加并输出S=-1+3-…+-2015+2016=2016.
故选B

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在边长为3的正三角形ABC中,E,F,P分别是AB,AC,BC边上的点,满足$\frac{AE}{EB}$=$\frac{CF}{FA}$=$\frac{CP}{PB}$=$\frac{1}{2}$,将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连结A1B,A1P(如图),则以下结论错误的是(  )
A.CF∥平面A1EP
B.A1E⊥平面BEP
C.点B到面A1PF的距离为$\sqrt{3}$
D.异面直线BP与A1F所成角的余弦值为$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常数,且0<λ<1.
(1)求函数f(x)的极值;
(2)证明:对任意正数a,存在正数x,使不等式|$\frac{{e}^{x}-1}{x}-1$|<a成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在锐角△ABC中,∠A=$\frac{π}{3}$,∠BAC的平分线交边BC于点D,|AD|=1,则△ABC面积的取值范围是(  )
A.[$\frac{\sqrt{10}}{6}$,$\frac{\sqrt{7}}{4}$]B.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{7}}{4}$]C.[$\frac{\sqrt{10}}{6}$,$\frac{3\sqrt{3}}{8}$)D.[$\frac{\sqrt{3}}{3}$,$\frac{3\sqrt{3}}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l过点P(-1,2),倾斜角为$\frac{3π}{4}$.以坐标原点为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)记直线l和曲线C的两个交点分别为A,B,求|PA|+|PB|,|PA|•|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上存在一点M,使得|PQ|=|MQ|,其中P(-b,0),Q(b,0),若tan∠MQP=-2$\sqrt{2}$,则双曲线C的渐近线方程为y=±$\frac{\sqrt{41}}{5}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若2x=9,${log_2}\frac{8}{3}=y$,则x+2y=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数$z=\frac{3-i}{1-i}$的共轭复数是2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=2|x|+x2,若f(a-1)≤3,则a的取值范围是[0,2].

查看答案和解析>>

同步练习册答案