设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
, 在
轴负半轴上有一点
,且![]()
![]()
(1)若过
三点的圆 恰好与直线
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
(1)
;(2)存在满足题意的点
且
的取值范围是
。
解析试题分析:(1)由题意
,得
,所以
又
由于
,所以
为
的中点,
所以![]()
所以
的外接圆圆心为
,半径
3分
又过
三点的圆与直线
相切,
所以
解得
,![]()
所求椭圆方程为
6分
(2)有(1)知
,设
的方程为:![]()
将直线方程与椭圆方程联立
,整理得![]()
设交点为
,因为![]()
则
8分
若存在点
,使得以
为邻边的平行四边形是菱形,
由于菱形对角线垂直,所以![]()
又
又
的方向向量是
,故
,则
,即![]()
由已知条件知![]()
11分
,故存在满足题意的点
且
的取值范围 是
13分
考点:本题主要考查椭圆标准方程,直线方程,直线与椭圆的位置关系,存在性问题研究,平面向量的坐标运算。
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用了椭圆的几何性质。对于存在性问题,往往先假设存在,利用已知条件加以探究,以明确计算的合理性。本题(III)通过确定m的表达式,利用函数思想,通过求函数的最值,确定得到其范围。
科目:高中数学 来源: 题型:解答题
过抛物线
的焦点
作倾斜角为
的直线交抛物线于
、
两点,过点
作抛物线的切线
交
轴于点
,过点
作切线
的垂线交
轴于点
。![]()
(1) 若
,求此抛物线与线段
以及线段
所围成的封闭图形的面积。
(2) 求证:
;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
与椭圆
有相同的焦点,点
、
分别是椭圆的右、右顶点,若椭圆经过点
.
(1)求椭圆的方程;
(2)已知
是椭圆的右焦点,以
为直径的圆记为
,过点
引圆
的切线,求此切线的方程;
(3)设
为直线
上的点,
是圆
上的任意一点,是否存在定点
,使得
?若存在,求出定点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直线
与椭圆
交于
,
两点,已知![]()
,![]()
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线
过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2是离心率为
的椭圆
C:
(a>b>0)的左、右焦点,直线
:x=-
将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.![]()
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若椭圆
的中心在原点,焦点在
轴上,短轴的一个端点与左右焦点
、
组成一个正三角形,焦点到椭圆上的点的最短距离为
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于
、
两点,线段
的中点为
,求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图,已知椭圆
=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.![]()
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若
=2
,
·
=
,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com