精英家教网 > 高中数学 > 题目详情
如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E、F分别是点A在PB、PC上的射影.给出下列结论:

①AF⊥PB;      ②EF⊥PB;
③AF⊥BC;      ④AE⊥平面PBC.
其中正确命题的序号是     
①②③

试题分析:所在的平面,
,又为圆的直径,是圆上的一点,
,又,
平面,平面
,又,
平面,又平面
,即①正确;
,故不与平面垂直,即④错误;
,同理可证平面,平面
,即②正确;
平面,平面知,,即③正确;
故答案为①②③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面为菱形,,且,分别是的中点.
(1)求证:∥平面
(2)过作一平面交棱于点,若二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在侧棱垂直于底面三棱柱中,,点的中点.

(1)求证:
(2)求证: 
(3)求三棱锥的体积.

 

 
 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图3,已知二面角的大小为,菱形在面内,两点在棱上,的中点,,垂足为.
(1)证明:平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=
3
AB=
3
,E、F
分别为AC、AD上的动点.
(1)若
AE
EC
=
AF
FD
,求证:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
AF
FD
=2
,求平面BEF与平面BCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A、B、C三点在球心为O,半径为3的球面上,且几何体O-ABC为正三棱锥,若A、B两点的球面距离为π,则正三棱锥的侧面与底面所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知轴对称平面五边形ADCEF(如图1),BC为对称轴,AD⊥CD,AD=AB=1,CD=BC=
3
,将此图形沿BC折叠成直二面角,连接AF、DE得到几何体(如图2).
(1)证明:AF平面DEC;
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正三棱锥中,分别是 的中点,上任意一点,则直线所成的角的大小是    (     )
A.B.C.D.随点的变化而变化.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是________.

查看答案和解析>>

同步练习册答案