精英家教网 > 高中数学 > 题目详情
如图3,已知二面角的大小为,菱形在面内,两点在棱上,的中点,,垂足为.
(1)证明:平面
(2)求异面直线所成角的余弦值.
(1)详见解析  (2)

试题分析:(1)题目已知,利用线面垂直的性质可得,已知角,利用余弦定理即可说明,即垂直于面内两条相交的直线,根据线面垂直的判断即可得到直线垂直于面.
(2)菱形为菱形可得,则所成角与角大小相等,即求角的余弦值即可,利用菱形所有边相等和一个角为即可求的的长度,根据(1)可得,即角为二面角的平面角为,结合为直角三角形与的长度,即可求的长度,再直角中,已知,利用直角三角形中余弦的定义即可求的角的余弦值,进而得到异面直线夹角的余弦值.
(1)如图,因为,,所以,连接,由题可知是正三角形,又的中点,所以,而,故平面.

(2)因为,所以所成的角等于所成的角,即所成的角,由(1)可知,平面,所以,又,于是是二面角的平面角,从而,不妨设,则,易知,在中,,连接,在中,,所以异面直线所成角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)设平面ABE与平面ACD的交线为直线,求证:∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求证:BF∥平面ACE;
(2)求证:BF⊥BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E、F分别是点A在PB、PC上的射影.给出下列结论:

①AF⊥PB;      ②EF⊥PB;
③AF⊥BC;      ④AE⊥平面PBC.
其中正确命题的序号是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是(  )
A.α⊥β,且m?α B.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四棱锥P-ABCD的底面为正方形,侧面PAD为等边三角形,且侧面PAD⊥底面ABCD.点M在底面内运动,且满足MP=MC,则点M在正方形ABCD内的轨迹


A.                 B.                C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两条异面直线所成的角为,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有(    )
A.12对B.18对C.24对D.30对

查看答案和解析>>

同步练习册答案