精英家教网 > 高中数学 > 题目详情

【题目】已知命题p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要条件,则实数a的取值范围是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

【答案】A
【解析】解:命题p: 可得, ,即:x<1或x>2, 命题q:x2+(a﹣1)x﹣a>0,即(x+a)(x﹣1)>0,
若﹣a=1,即a=﹣1,不等式(x+a)(x﹣1)>0的解是x≠1,符合p是q的充分不必要条件;
若﹣a>1,即a<﹣1,不等式(x+a)(x﹣1)>0的解是x>﹣a,或x<1,由x<1或x>2,得到﹣a<2,符合p是q的充分不必要条件;
若﹣a<1,即a>﹣1,不等式(x+a)(x﹣1)>0的解是x>1,或x<﹣a,∵p是q的充分不必要条件,q:x<1或x>2,不满足P是q的充分条件;
综上得a的取值范围是(﹣2,﹣1].
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax+1,x∈[﹣1,2].
(1)若函数f(x)为单调函数,求a的取值范围;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个递增的等差数列{an}的前三项的和为﹣3,前三项的积为8.数列 的前n项和为
(1)求数列{an}的通项公式.
(2)求数列 的通项公式.
(3)是否存在一个等差数列{cn},使得等式 对所有的正整数n都成立.若存在,求出所有满足条件的等差数列{cn}的通项公式,并求数列{bn}的前n项和Tn;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex﹣x.
(1)讨论f(x)的单调性;
(2)若对x≥0,恒有f(x)≥ax2+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴, 分别是x轴、y轴正方向同向的单位向量,若向量 =x +y ,则把有序数对(x,y)叫做向量 在坐标系xOy中的坐标,在此坐标系下,假设 =(﹣2,2 ), =(2,0), =(5,﹣3 ),则下列命题不正确的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:数列{an}前n项的乘积Tn=a1a2…an , 数列an=29n , 则下面的等式中正确的是(
A.T1=T19
B.T3=T17
C.T5=T12
D.T8=T11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,E为BC上的动点.

(1)当E为BC的中点时,求证:PE⊥DE;
(2)设PA=1,在线段BC上存在这样的点E,使得二面角P﹣ED﹣A的平面角大小为 .试确定点E的位置.

查看答案和解析>>

同步练习册答案