精英家教网 > 高中数学 > 题目详情

【题目】定义:数列{an}前n项的乘积Tn=a1a2…an , 数列an=29n , 则下面的等式中正确的是(
A.T1=T19
B.T3=T17
C.T5=T12
D.T8=T11

【答案】C
【解析】解:∵an=29n , ∴Tn=a1a2…an=28+7++9n=
∴T1=28 , T19=219 , 故A不正确
T3=221 , T17=20 , 故B不正确
T5=230 , T12=230 , 故C正确
T8=236 , T11=233 , 故D不正确
故选C
【考点精析】掌握数列的定义和表示是解答本题的根本,需要知道数列中的每个数都叫这个数列的项.记作an,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作an

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在雅安发生地震灾害之后,救灾指挥部决定建造一批简易房,供灾区群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.
(1)设房前面墙的长为x,两侧墙的长为y,一套简易房所用材料费为p,试用x,y表示p;
(2)一套简易房面积S的最大值是多少?当S最大时,前面墙的长度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要条件,则实数a的取值范围是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C的对边,若
(1)求角A的大小;
(2)已知 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标
x,y,z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标
x,y,z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的样本数据估计该批产品的一等品率.
(2)在该样品的一等品中,随机抽取2件产品, ①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出S的值为(
A.
B.
C.0
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x(2﹣x),
(1)写出函数y=f(x)在x∈(﹣∞,0)时的解析式;
(2)若关于x的方程f(x)=a恰有两个不同的解,求a的值.

查看答案和解析>>

同步练习册答案