精英家教网 > 高中数学 > 题目详情

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

【答案】A
【解析】解:由已知可得函数y=Asin(ωx+)的图象经过(﹣ ,2)点和(﹣ ,2)

则A=2,T=π即ω=2

则函数的解析式可化为y=2sin(2x+),将(﹣ ,2)代入得

+= +2kπ,k∈Z,

即φ= +2kπ,k∈Z,

当k=0时,φ=

此时

故选A

根据已知中函数y=Asin(ωx+)在一个周期内的图象经过(﹣ ,2)和(﹣ ,2),我们易分析出函数的最大值、最小值、周期,然后可以求出A,ω,φ值后,即可得到函数y=Asin(ωx+)的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法中错误的是(
A.若p或q为假命题,则p、q均为假命题.
B.“x=1”是“x2﹣3x+2=0”的充分不必要条件.
C.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”.
D.对于命题p:存在x∈R使得x2+x+1<0,则非p:存在x∈R,使x2+x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对边分别是a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B.
(2)若 ,△ABC的周长为 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= x3﹣2x2+3x﹣m
(1)求f(x)的极值
(2)当m取何值时,函数f(x)有三个不同零点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要条件,则实数a的取值范围是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(I)若A,B两点的纵会标分别为 的值;
(II)已知点C是单位圆上的一点,且 的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体ABCD及其三视图如图1,2所示.

(1)求四面体ABCD的体积;
(2)若点E为棱BC的中点,求异面直线DE和AB所成角的余弦值.

查看答案和解析>>

同步练习册答案