精英家教网 > 高中数学 > 题目详情
14.在△ABC中,角A,B,C满足ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)若△ABC是锐角三角形,求函数y=2sinB-cos2B的值域;
(3)在三角形ABC中,设角A,B,C的对边分别为a,b,c,若c=1,求△ABC周长的范围.

分析 (1)根据正弦定理与两角和的正弦公式,化简题中的等式可得sin(B+C)-2sinAcosC,结合三角函数的诱导公式算出cosC=$\frac{1}{2}$,可得角C的大小;
(2)运用二倍角公式得出y=2sinB2+2sinB-1,再运用二次函数性质求解即可.
(3)根据题意得出:ABC周长=1+b+a,利用正弦定理,三角公式化简得出1+$\frac{2}{\sqrt{3}}$(sinB+sinA)=1+$\frac{2}{\sqrt{3}}$(sinB+sin($\frac{2π}{3}$-B))=1$+2sin(B+\frac{π}{6}$)求解即可.

解答 解:(1)∵在△ABC中,ccosB=(2a+b)cosC,
∴由正弦定理,可得sinCcosB=(2sinA-sinB)cosC,
即sinCcosB+sinBcosC=2sinAcosC,所以sin(B+C)=2sinAcosC,
∵△ABC中,sin(B+C)=sin(π-A)=sinA>0,
∴sinA=2sinAcosC,即sinA(1-2cosC)=0,可得cosC=$\frac{1}{2}$.
又∵C是三角形的内角,∴C=$\frac{π}{3}$;
(2)B+C=$\frac{2π}{3}$,
∵△ABC是锐角三角形
∴$\frac{π}{6}$$<B<\frac{π}{2}$,$\frac{1}{2}$<sinB<1,
函数y=2sinB-cos2B=2sinB2+2sinB-1,
根据二次函数的性质得出:$\frac{1}{2}$<y<3,
∴值域($\frac{1}{2}$,3);
(3)∵c=1,C=$\frac{π}{3}$,
∴根据正弦定理得出:$\frac{1}{\frac{\sqrt{3}}{2}}$=2R,
2R=$\frac{2}{\sqrt{3}}$,0$<B<\frac{2π}{3}$,
根据三角函数的性质得出:1$<2sin(B+\frac{π}{6})$≤2,2<1$+2sin(B+\frac{π}{6}$)≤3,
△ABC周长的范围:(2,3].

点评 本题给出三角形的一边长与边角关系式,求角C的大小并依此求三角形面积的最大值.着重考查了正余弦定理、两角和的正弦公式三角函数的图象性质,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知点x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+y≤2}\end{array}\right.$,若ax+y≤3恒成立,则实数a的取值范围是(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.求证:等腰梯形的对角线相等.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题:
①函数$f(x)=4cos(2x+\frac{π}{3})$的一个对称中心为$(-\frac{5}{12}π,0)$
②已知:f(x)=min{sinx,cosx},则f(x)的值域为$[-1,\frac{{\sqrt{2}}}{2}]$
③若α,β均为第一象限角,且α>β,则sinα>sinβ
④若${(\frac{1}{2})^a}={(\frac{1}{3})^b}$,则a>b>0
⑤定义域为R的函数y=f(x)满足f(-x)+f(x+2)=2,则其图象关于点(1,1)对称
其中正确命题的序号是①②⑤(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx+2$\sqrt{3}$cos2$\frac{x}{2}$,设a=f($\frac{π}{7}$),b=f($\frac{π}{6}$),c=f($\frac{π}{3}$),则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log3x,x∈[3,27],g(x)=f2(x)-2m•f(x)+3的最小值为h(m).
(1)求h(m);
(2)是否存在实数a,b,同时满足下列条件:
①b<a<1
②当h(m)的定义域为[b,a]时,值域为[b2,a2],若存在,求出a和b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=6+loga(x-4)(a>0,a≠1)的图象恒过点(5,6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sin(2x-θ)的图象F向右平移$\frac{π}{3}$个单位长度得到图象F′,若F′的一条对称轴是直线x=$\frac{π}{4}$,则θ的一个可能取值是(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题结论中错误的有①②③.
①命题“若x=$\frac{π}{6}$,则sinx=$\frac{1}{2}$”的逆命题为真命题
②设a,b是实数,则a<b是a2<b2的充分而不必要条件
③命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R,都有x2+x+1>0”
④函数f(x)=lnx+x-$\frac{3}{2}$在区间(1,2)上有且仅有一个零点.

查看答案和解析>>

同步练习册答案