精英家教网 > 高中数学 > 题目详情

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为的面积为,令,求的最大值.

(1)圆心的轨迹
(2)的比值为一个常数,这个常数为
(3)当时,取最大值.

解析试题解析:(1)设圆心的坐标为,半径为 
由于动圆与圆相切,且与圆相内切,所以动
与圆只能内切
                               2分
圆心的轨迹为以为焦点的椭圆,其中

故圆心的轨迹                                             4分
(2)设,直线,则直线
可得:
                       6分
可得:


                        8分

的比值为一个常数,这个常数为                            9分
(3)的面积的面积,
到直线的距离
                     11分
,则

(当且仅当,即,亦即时取等号)
时,取最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,点为短轴的一个端点,.
(1)求椭圆的方程;
(2)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.
求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,斜率为2的直线l过点A(2,3).

(1)求椭圆E的方程;
(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线轴交于点,判断以线段为直径的圆是否过点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程;
(2)若直线)与椭圆交于不同的两点,且线段 
的垂直平分线过定点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,试问,是否存在轴上的点,使得对任意的为定值,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的中心为原点,长轴在轴上,离心率,又椭圆上的任一点到椭圆的两焦点的距离之和为.

(1)求椭圆的标准方程;
(2)若平行于轴的直线与椭圆相交于不同的两点,过两点作圆心为的圆,使椭圆上的其余点均在圆外.求的面积的最大值.

查看答案和解析>>

同步练习册答案