精英家教网 > 高中数学 > 题目详情
已知=(c,0)(c>0),=(n,n)(n∈R),||的最小值为1,若动点P同时满足下列三个条件:
①||=||(a>c>0);
 (其中=(,t),λ≠0,t∈R);
③动点P的轨迹C经过点B(0,-1).
(Ⅰ)求c的值;
(Ⅱ)求曲线C的方程;
(Ⅲ)是否存在方向向量为a=(1,k)(k≠0)的直线l,使l与曲线C交于两个不同的点M、N,且||=||?若存在,求出k的范围;若不存在,请说明理由.
【答案】分析:(Ⅰ):由向量模的公式得出||==,利用二次函数的性质得出其最小值,从而求得c值.
(Ⅱ)先根据条件得到:||=||(a>c>0).从而得出点P在以F为焦点,x=为准线的椭圆上,从而=|-x|,最后将点B(0-1)代入,解得a即可写出曲线C的方程;
(Ⅲ)对于存在性问题,可先假设存在,即假设存在方向向量为a=(1,k)(k≠0)的直线l满足条件,则可设l:y=kx+m(k≠0),再利用△ABC为正三角形,求出CD的长,若出现矛盾,则说明假设不成立,即不存在;否则存在.
假设存在方向向量为a=(1,k)(k≠0)的直线l满足条件,则可设l:y=kx+m(k≠0),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系结合垂直关系即可求得k的范围,从而解决问题.
解答:解:(Ⅰ):||==
当n=时,||min==1,所以c=.(3分)
(Ⅱ)∵ (λ≠0),∴PE⊥直线x=,又||=||(a>c>0).
∴点P在以F为焦点,x=为准线的椭圆上.(5分)
设P(x,y),则有=|-x|,点B(0-1)代入,解得a=
∴曲线C的方程为 +y2=1                                       (7分)
(Ⅲ)假设存在方向向量为a=(1,k)(k≠0)的直线l满足条件,则可设l:y=kx+m(k≠0),
与椭圆+y2=1联立,消去y得(1+3k2)x2+6kmx+3m2-3=0.(10分)
由判别式△>0,可得m2<3k2+1.①
设M(x1,y1),N(x2,y2),MN的中点P(x,y),由|BM|=|BN|,则有BP⊥MN.
由韦达定理代入kBP=-,可得到m=               ②
联立①②,可得到  k2-1<0,(12分)
∵k≠0,∴-1<k<0或0<k1.
即存在k∈(-1,0)∪(0,1),使l与曲线C交于两个不同的点M、N,且||=||.(14分)z
点评:本小题主要考查向量在几何中的应用、直线与圆锥曲线的综合问题,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AB,BS与直线l:x=
10
3
分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x=
10
3
分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为
1
5
?若存在,确定点T的个数,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+4=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线l:x=5分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在(0,+∞)上变化时,讨论S的大小与Q点的个数之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OF
=(c,0)(c>0),
OG
=(n,n)(n∈R),|
FG
|的最小值为1,若动点P同时满足下列三个条件:
①|
PF
|=
c
a
|
PE
|(a>c>0);
PE
OF
 (其中
OE
=(
a2
c
,t),λ≠0,t∈R);
③动点P的轨迹C经过点B(0,-1).
(Ⅰ)求c的值;
(Ⅱ)求曲线C的方程;
(Ⅲ)是否存在方向向量为a=(1,k)(k≠0)的直线l,使l与曲线C交于两个不同的点M、N,且|
BM
|=|
BN
|?若存在,求出k的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第一次统考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径

的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴

求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点

C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

同步练习册答案