精英家教网 > 高中数学 > 题目详情
5.函数$f(x)=\left\{\begin{array}{l}{x^3}-3x+1,x≥0\\{x^2}-2x-4,x<0\end{array}\right.$的零点个数为(  )
A.1B.2C.3D.4

分析 当x≥0时,f(x)=x3-3x+1,利用函数零点的判定定理可得函数有2个零点;当x<0时,f(x)=x2-2x-4,利用函数零点的判定定理可得函数有1个零点,综合可得结论.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{x^3}-3x+1,x≥0\\{x^2}-2x-4,x<0\end{array}\right.$,
当x≥0时,f(x)=x3-3x+1,f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)=0,求得x=1,在[0,1)上,f′(x)<0,f(x)为减函数;
在(1,+∞)上,f′(x)>0,f(x)为增函数.
∵f(0)•f(1)=1•(-1)=-1<0,故函数f(x)在(0,1)有唯一零点.
∵f(1)•f(2)=(-1)•3=-3<0,
故函数f(x)在(1,2)有唯一零点,故函数f(x)在(1,+∞)有唯一零点.
当x<0时,f(x)=x2-2x-4,它的图象的对称轴为直线x=1,
故函数f(x)在(-∞,0)上单调递减,
∵f(0)=-4,f(-2)=4,f(0)•f(-2)=-16<0,
故函数f(x)在(-2,0)有唯一零点,故函数f(x)在(-∞,0)有唯一零点.
综上可得,f(x)在R上零点的个数为3,
故选:C.

点评 本题主要考查函数零点的判定定理的应用,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=$\frac{1}{2}$,an+1an-2an+1+1=0,n∈N*,求证:数列{$\frac{1}{{a}_{n}-1}$}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线经过点(1,2),则该渐近线与圆(x+1)2+(y-2)2=4相交所得的弦长为$\frac{{4\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.点O是平行四边形ABCD的中点,E,F分别在边CD,AB上,且$\frac{CE}{ED}$=$\frac{AF}{FB}$=$\frac{1}{2}$.求证:点E,O,F在同一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\frac{|x|}{e^x}$,g(x)=-4x+m•2x+1+m2+2m-1,若M={x|f(g(x))>e}=R,则实数m的取值范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在半径为2的球面中,有一个底面是等边三角形,侧棱与底面垂直的三棱柱的顶点都在这个球面上,则该三棱柱的侧面积的最大值为12$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知凸四边形ABCD的顶点在一个圆周上,另一个圆的圆心O在AB上,且与四边形ABCD的其余三边相切.点E在边AB上,且AE=AD.
求证:O,E,C,D四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,过B、C分别作∠BAC的平分线的垂线,E、F为垂足,AD⊥BC于D、M为BC中点,求证:M、E、D、F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值以及相应的x的值.

查看答案和解析>>

同步练习册答案