精英家教网 > 高中数学 > 题目详情
10.在半径为2的球面中,有一个底面是等边三角形,侧棱与底面垂直的三棱柱的顶点都在这个球面上,则该三棱柱的侧面积的最大值为12$\sqrt{3}$.

分析 设底面等边三角形的边长为a,三棱柱的高为h.由题意可得:22=$(\frac{1}{2}h)^{2}$+$(\frac{2}{3}×\frac{\sqrt{3}}{2}a)^{2}$,利用基本不等式的性质、侧面积的计算公式即可得出.

解答 解:设底面等边三角形的边长为a,三棱柱的高为h.
由题意可得:22=$(\frac{1}{2}h)^{2}$+$(\frac{2}{3}×\frac{\sqrt{3}}{2}a)^{2}$,
化为:4a2+3h2=48.
∴48≥$2\sqrt{4{a}^{2}•3{h}^{2}}$,化为:ah≤4$\sqrt{3}$.当且仅当a=$\sqrt{6}$,h=2$\sqrt{2}$时取等号.
∴侧面积S=3ah≤12$\sqrt{3}$,即该三棱柱的侧面积的最大值为12$\sqrt{3}$.
故答案为:12$\sqrt{3}$.

点评 本题考查了等边三角形的性质、基本不等式的性质、侧面积的计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知f(1+$\sqrt{x}$)=x+1,则f(2)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow a=(-1,1),\overrightarrow{OA}=\overrightarrow a-\overrightarrow b,\overrightarrow{OB}$=$\overrightarrow a+\overrightarrow b$,若△OAB是以O为直角顶点的等腰直角三角形,则△OAB的面积是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知四面体P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,AB=2AC,若四面体P一ABC的体积为$\frac{9\sqrt{3}}{16}$,则该球的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)=\left\{\begin{array}{l}{x^3}-3x+1,x≥0\\{x^2}-2x-4,x<0\end{array}\right.$的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若正三棱柱的所有棱长均为a,且其体积为2$\sqrt{3}$,则此三棱柱外接球的表面积是(  )
A.$\frac{8}{3}$πB.$\frac{28}{3}$πC.D.$\frac{4}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知动点M(x,y)在过点(-$\frac{3}{2}$,-2)的圆x2+y2-2x+4y=0的两条切线和x-y+1=0围成的区域内,则$\frac{x+1}{x+2y-3}$的取值范围为(  )
A.(-1,0)∪(0,$\frac{1}{7}$]B.[-1,0)∪(0,$\frac{1}{7}$]C.[-1,0)∪(0,$\frac{1}{7}$)D.[-1,$\frac{1}{7}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=eax-$\frac{lnx}{a}$(a>0)存在零点,则a的取值范围是(  )
A.(0,$\frac{1}{e}$]B.(0,$\frac{1}{{e}^{2}}$]C.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$]D.[$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求极限:$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{2}^{n-1}}{{a}^{n-1}+{2}^{n+1}}$.

查看答案和解析>>

同步练习册答案