分析 设底面等边三角形的边长为a,三棱柱的高为h.由题意可得:22=$(\frac{1}{2}h)^{2}$+$(\frac{2}{3}×\frac{\sqrt{3}}{2}a)^{2}$,利用基本不等式的性质、侧面积的计算公式即可得出.
解答 解:设底面等边三角形的边长为a,三棱柱的高为h.
由题意可得:22=$(\frac{1}{2}h)^{2}$+$(\frac{2}{3}×\frac{\sqrt{3}}{2}a)^{2}$,
化为:4a2+3h2=48.
∴48≥$2\sqrt{4{a}^{2}•3{h}^{2}}$,化为:ah≤4$\sqrt{3}$.当且仅当a=$\sqrt{6}$,h=2$\sqrt{2}$时取等号.
∴侧面积S=3ah≤12$\sqrt{3}$,即该三棱柱的侧面积的最大值为12$\sqrt{3}$.
故答案为:12$\sqrt{3}$.
点评 本题考查了等边三角形的性质、基本不等式的性质、侧面积的计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$π | B. | $\frac{28}{3}$π | C. | 3π | D. | $\frac{4}{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0)∪(0,$\frac{1}{7}$] | B. | [-1,0)∪(0,$\frac{1}{7}$] | C. | [-1,0)∪(0,$\frac{1}{7}$) | D. | [-1,$\frac{1}{7}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$] | B. | (0,$\frac{1}{{e}^{2}}$] | C. | [$\frac{1}{{e}^{2}}$,$\frac{1}{e}$] | D. | [$\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com