精英家教网 > 高中数学 > 题目详情
18.已知四面体P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,AB=2AC,若四面体P一ABC的体积为$\frac{9\sqrt{3}}{16}$,则该球的表面积为9π.

分析 如图所示,球心O在AB上,可得∠BCA=90°.设AC=x,可得AB=2x,BC=$\sqrt{3}$x.由PO⊥平面ABC,可得PO=OA=x为高.利用三棱锥的体积计算公式、球的表面积计算公式即可得出.

解答 解:如图所示,
∵球心O在AB上,∴∠BCA=90°.
设AC=x,∵AB=2AC,∴AB=2x.
∴BC=$\sqrt{3}$x.
∵PO⊥平面ABC,∴PO=OA=x为高.
∴$\frac{1}{3}×{S}_{△ABC}$×PO=$\frac{9\sqrt{3}}{16}$,
∴$\frac{1}{3}×\frac{1}{2}×\sqrt{3}{x}^{2}$×x=$\frac{9\sqrt{3}}{16}$,解得x=$\frac{3}{2}$=r,
∴该球的表面积S=4$π×(\frac{3}{2})^{2}$=9π.
故答案为:9π.

点评 本题考查了勾股定理、三棱锥的体积计算公式、线面垂直的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{b}{x}$-a(x>0,a,b∈R).
(Ⅰ)讨论函数f(x)的单调区间与极值;
(Ⅱ)若b>0且f(x)≥0恒成立,求ea-1-b+1的最大值;
(Ⅲ)在(Ⅱ)的条件下,且ea-1-b+1取得最大值时,设F(b)=$\frac{a-1}{b}$-m(m∈R),且函数F(x)有两个零点x1,x2,求实数m的取值范围,并证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|-3<x<3},B={x|y=lg(x+1)},则集合A∩B为(  )
A.[0,3)B.[-1,3)C.(-1,3)D.(-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知中心在原点,焦点在x轴上的双曲线C的离心率为$\sqrt{2}$,且双曲线C与斜率为2的直线l有一个公共点P(-2,0).
(1)求双曲线C的方程及它的渐近线方程;
(2)求以直线l与坐标轴的交点为焦点的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.点O是平行四边形ABCD的中点,E,F分别在边CD,AB上,且$\frac{CE}{ED}$=$\frac{AF}{FB}$=$\frac{1}{2}$.求证:点E,O,F在同一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足|x|+|y|≤1,则|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$,取到此最小值时x=$\frac{1}{3}$,y=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在半径为2的球面中,有一个底面是等边三角形,侧棱与底面垂直的三棱柱的顶点都在这个球面上,则该三棱柱的侧面积的最大值为12$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示(均由边长为$\sqrt{2}$的正方形及其对角线组成),则该几何体的表面积为(  )
A.8$\sqrt{3}$B.4$\sqrt{3}$C.8$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合P={x|x=k+$\frac{1}{2}$,k∈z},Q={x|x=$\frac{k}{2}$,k∈z},记原命题:“x∈P,则x∈Q”.那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

同步练习册答案