分析 (1)由题意,设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0).由点P(-2,0)在双曲线上,可得a=2.利用$\frac{c}{a}$=$\sqrt{2}$,可得c.利用c2=a2+b2,可得b.即可得出方程及其渐近线方程.
(2)由题意,直线l的方程为y=2(x+2),可得直线l与坐标轴交点分别为F1(-2,0),F2(0,4).即可得出相应的抛物线方程.
解答 解:(1)由题意,设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0).
∵点P(-2,0)在双曲线上,∴a=2.
∵双曲线C的离心率为$\sqrt{2}$,∴c=2$\sqrt{2}$.
∵c2=a2+b2,∴b=2.
∴双曲线的方程为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1,
其渐近线方程为:y=±x.
(2)由题意,直线l的方程为y=2(x+2),即y=2x+4,
直线l与坐标轴交点分别为F1(-2,0),F2(0,4).
∴以F1(-2,0)为焦点的抛物线的标准方程为y2=-8x;
以F2(0,4)为焦点的抛物线的标准方程为x2=16y.
点评 本题考查了抛物线与双曲线的标准方程及其性质、直线与坐标轴相交问题问题,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$π | B. | $\frac{28}{3}$π | C. | 3π | D. | $\frac{4}{3}$π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com