精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.
(1)求a;
(2)已知两个正数m,n满足m2+n2=a,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

分析 (1)根据绝对值三角不等式求出f(x)的最小值,即可求出a的值;
(2)根据基本不等式的性质求出其最小值即可.

解答 解:(1)f(x)=|x+1|+|x|≥|x+1-x|=1,
∴f(x)的最小值a=1.                               …(4分)
(2)由(1)知m2+n2=1≥2mn,得mn≤$\frac{1}{2}$,
则$\frac{1}{m}$+$\frac{1}{n}$≥2$\sqrt{\frac{1}{mn}}$≥2$\sqrt{2}$,当且仅当m=n=$\frac{\sqrt{2}}{2}$时取等号.…(11分)
所以$\frac{1}{m}$+$\frac{1}{n}$的最小值为2$\sqrt{2}$.                         …(12分)

点评 本题考查了绝对值不等式问题,考查基本不等式的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设S={x∈N|0≤x≤6},A={1,3,4},B={4,6},C={3,5},则A∩B{4},A∪B={1,3,4,6},(∁SA)∩(∁SB)={2,5},A∩B∩C=∅,A∪B∪C={1,3,4,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设圆O:x2+y2=1,直线l:x+2y-3=0,点A∈l,若圆O上存在点B,使得∠OAB=45°(O为坐标原点),则点A的横坐标的最大值为(  )
A.$\frac{1}{5}$B.1C.$\frac{9}{5}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线3x-4y+5=0和(x-1)2+(y+3)2=4的位置关系是相离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数).
(Ⅰ)若a=1,求函数y=f(x)•g(x)在区间[-2,0]上的最大值;
(Ⅱ)若a=-1,关于x的方程f(x)=k•g(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1,x2∈[0,2],x1≠x2,不等式|f(x1)-f(x2)|<|g(x1)-g(x2)|均成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是0.8πr2分,其中r是瓶子的半径,单位是厘米.已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm.问题:
(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{b}{x}$-a(x>0,a,b∈R).
(Ⅰ)讨论函数f(x)的单调区间与极值;
(Ⅱ)若b>0且f(x)≥0恒成立,求ea-1-b+1的最大值;
(Ⅲ)在(Ⅱ)的条件下,且ea-1-b+1取得最大值时,设F(b)=$\frac{a-1}{b}$-m(m∈R),且函数F(x)有两个零点x1,x2,求实数m的取值范围,并证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.试比较下列各组数的大小
(1)$\sqrt{12}$-$\sqrt{11}$和$\sqrt{11}$-$\sqrt{10}$
(2)$\frac{2}{\sqrt{6}+4}$和2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知中心在原点,焦点在x轴上的双曲线C的离心率为$\sqrt{2}$,且双曲线C与斜率为2的直线l有一个公共点P(-2,0).
(1)求双曲线C的方程及它的渐近线方程;
(2)求以直线l与坐标轴的交点为焦点的抛物线的标准方程.

查看答案和解析>>

同步练习册答案