已知函数f(x)=ax3+bx2+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2.
(1)求函数y=f(x)的解析式;
(2)记,求函数y=g(x)的单调区间;
(3)在(2)的条件下,当k=2时,若函数y=g(x)的图象在直线y=x+m的下方,求m的取值范围.
|
解:(1)∵f(x)=ax3+bx2+cx(a≠0)为奇函数,∴f(-x)=-f(x),代入得,b=0 ∴ ∴f(x)=-x3+3x. 4分 (2) 因为函数定义域为(0,+Ω),所以 ①当k=-1时,g′(x)=-2x<0,函数在(0,+∞)单调递减; ②当k<-1时,k+1<0,∵x>0, ∴函数在(0,+∞)上单调递减; ③当k>-1时,k+1>0,令g′(x)>0,得 令 ∴k>-1时,单调递增区间为 综上,当k≤-1时,函数的单调递减区间为(0,+∞),无单调递增区间; 当k>-1时,函数的单调递增区间为 (3)当k=2时,g(x)=-x2+3+3lnx, 令h(x)=g(x)-(x+m)=-x2-x+3lnx+3-m, 又函数y=h(x)的定义域为(0,+∞),则当0<x<1时, ∴当x=1时,函数h(x)取得最大值1-m,故m的取值范围是(1,+∞). 答[1,+∞)也正确. 13分 |
科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题
已知函数f(x)=
(a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)<
.
查看答案和解析>>
科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题
(12分)已知函数f(x)=
(a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题
(本小题满分l2分)
已知函数f(x)=a-
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题
( (本小题满分13分)
已知函数f(x)=(a-1)x+aln(x-2),(a<1).
(1)讨论函数f(x)的单调性;
(2)设a<0时,对任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题
(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1
)
(1)求函数的定义域 (2)讨论函数f(X)的单调性
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com