精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x
g(x)=
34x+8
3x+2
的定义域分别为M和N,则M∩N=(  )
分析:根据根式函数和分式函数的定义域求法求函数的定义域.然后利用集合关系进行交集运算即可.
解答:解:要使函数f(x)有意义则-x≥0,即x≤0,
∴M={x|x≤0}.
要使函数g(x)有意义则3x+2≠0,即x≠-
2
3

∴N={x|x≠-
2
3
}.
∴则M∩N={x|x≤0且x≠-
2
3
}.
故选D.
点评:本题主要考查函数定义域的求法以及集合的基本运算,要求熟练掌握常见函数的定义域求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案