精英家教网 > 高中数学 > 题目详情

已知向量函数.
(1)求函数的最小正周期及单调递减区间;
(2)在锐角三角形ABC中,的对边分别是,且满足 的取值范围.

(1) ;(2)

解析试题分析:(1)首先利用向量的坐标运算和两角和差公式求出函数的表达式,然后再根据三角函数的周期公式求出周期,由正弦函数的单调性可得,解出x,即得所求的单调减区间.(2)利用正弦公式把已知等式转化为角的三角函数式,再利用两角和差公式,把和角展开,整理可得sinC=2cosAsinC,即1=2cosA.得,在根据三角形的内角和定理和B是锐角,求出角B的取值范围为,即,可得,所以=.
试题解析:解:(1) 3分
函数的最小正周期为T   4分
函数的单调递减区间为。 6分
(2)由 8分
因为B为锐角,故有,得 10分
所以 11分
所以 的取值范围是. 12分
考点:1.正弦定理;2.两角和差公式;3.正弦函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,函数的最大值为6.
(Ⅰ)求
(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图像如图所示.

(1)求函数的解析式;
(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,计算:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A、B、C的对边分别为a、b、c,.
(I)求cosC;  (II)若

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若的值域;
(Ⅱ)△ABC中,角A,B,C的对边为a,b,c,若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=x2+ax().
(1)若函数y=f(sinx+cosx)()的最大值为,求f(x)的最小值;
(2)当a>2时,求证:f(sin2xlog2sin2x+cos2xlog2cos2x)1–a.其中x∈R,x¹kp且x¹kp(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,
(Ⅰ)求的值;
(Ⅱ)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,内角所对边长分别为.
(I)求
(II)若,求的面积.

查看答案和解析>>

同步练习册答案