精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知抛物线方程为

(1)若点在抛物线上,求抛物线的焦点的坐标和准线的方程;

(2)在(1)的条件下,若过焦点且倾斜角为的直线交抛物线于两点,点在抛物线的准线上,直线的斜率分别记为

求证:成等差数列;

 

【答案】

(1)抛物线的焦点坐标为,准线的方程为;(2)证明:见解析。

【解析】

试题分析:(Ⅰ)根据(2,2在抛物线y2=2px(p>0)上,可得p=2,从而可求抛物线的焦点坐标与准线l的方程;

(Ⅱ)过焦点F(1,0)且倾斜角为60°的直线m的方程为y=(x-1)与抛物线方程联立,可得点A、B的坐标,设点M的坐标为M(-1,t),即可证得kMA、kMF、kMB成等差数列.

解:(1)   ∵在抛物线上,  由   得……………2分

∴抛物线的焦点坐标为,          ……………3分

准线的方程为                ……………4分

(2)证明:∵抛物线的方程为

∴过焦点且倾斜角为的直线的方程为…………5分

可得 

解得点A、B的坐标为……………7分

∵抛物线的准线方程为,设点M的坐标为,……………8分

,…………9分

……………11分

成等差数列。               ……………12分

考点:本试题主要考查了直线与圆锥曲线的综合应用能力,涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.

点评:解决该试题的关键是熟练利用抛物线的性质,得到其方程,同时结合设而不求的思想,来表示出点的坐标关系式,结合斜率给弄个是得到证明。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案