精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,动点P到两点(0,-
3
),(0,
3
)的距离之和等于4,设动点P的轨迹为曲线C.
(1)写出曲线C的方程;
(2)若直线y=x+m与曲线C有交点,求实数m的取值范围.
分析:(1)由椭圆定义可判断曲线C为椭圆,且a=2,c=
3
,根据a,b,c的关系,可求出b的值,进而得到椭圆方程.
(2)若直线y=x+m与曲线C有交点,则联立椭圆与直线y=x+m的方程,得到的方程组必有解,消去y,得到关于x的一元二次方程中△≥0,就可求出m的范围.
解答:解:(1)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,-
3
),(0,
3
)为焦点,长半轴长为2的椭圆.
∴它的短半轴b=1
∴曲线C的方程为x2+
y2
4
=1

(2)联立方程组
x2+
y2
4
=1
y=x+m

消去y得5x2+2mx+m2-4=0
因为曲线C与直线y=x+m有交点,所以△=4m2-20(m2-4)≥0
化简得m2-5≤0
解得-
5
≤m≤
5

所以m的取值范围为[-
5
5
]
点评:本题主要考察了定义法求椭圆方程,以及直线与椭圆相交位置关系的判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案